NASA-TM-10236131

BORATORY SERIES SEL-89-201

ARE ENGINEERING
DRATORY (SEL)

SE ORGANIZATION
} USER’S GUIDE
IREVISION 2

OCTOBER 1992

(NASA-TM-108631) SOFTWARE MY 3-15800
ENGINEERING LABORATORY (SEL)

DATABASE ORGANIZATION ANO USER?®S

GUIDE, REVISION 2 (NASA) 244 p Unclas

G3/61 0136116

SOFTWARE ENGINEERING LABORATORY SERIES SEL-89-201

SOFTWARE ENGINEERING
LABORATORY (SEL)
DATABASE ORGANIZATION
AND USER’S GUIDE
REVISION 2

OCTOBER 1992

NNS

Naticnal Aeronautics and
Space Administration

Goddard Spacs Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center NASA/GSFC) and
created to investigate the effectiveness of software engineering technologies when applied to
the development of applications software. The SEL was created in 1976 and has three
primary organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effect of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The
activities, findings, and recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of reports that includes this document.

The original contributors to this document are

Maria So (Computer Sciences Corporation)

Gerard Heller (Computer Sciences Corporation)
Sandra Steinberg (Computer Sciences Corporation)
Karen Pumphrey (Computer Sciences Corporation)
Douglas Spiegel (NASA/GSFC)

The contributors to the latest revision of this document are

Linda Morusiewicz (Computer Sciences Corporation)
John Bristow (NASA/GSFC)

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

100044371 111

BAGE 1 INTENTICHALD e PRECEDING PAGE BLAIK NOT MUMEC

ABSTRACT

This document presents the organization of the Software Engineering Laboratory (SEL)
database. Included are definitions and detailed descriptions of the database tables and views,
the SEL data, and system support data. The mapping from the SEL and system support data
to the base tables is described. In addition, techniques for accessing the database through the
Database Access Manager for the SEL (DAMSEL) system and via the ORACLE structured
query language (SQL) are discussed.

100044371 v

PAGE__M_lNTEf‘mUi‘MLLY BLANK PRECED G #3800 7 0 o077 BUMED

TABLE OF CONTENTS

PAGE_ Vi INTENTILU“i1Y RLANK w e R

Section 1—Introduction 1-1
1.1 Basic Relational Database Concepts 1-2
Section 2—A Conceptual Viewof SELData 2-1
21 Project Dataovuiniiiiiiiiiiiii i 2-1
211 Scheduleso 2-3
21.2 Estimatesoovitirie it 24
2.13 Resource USe ...ovveriiniiiniiiiiiiiiiannennns 2-5
2.14 Product Characteristics [ERRRTREY 2-10
2.15 Changescooiiiiiii i 2-11
2.1.6 Subjective Evaluations oL 2-14
2.1.7 Final Statisticsco i 2-15
2.1.8 Development StatusData 2-18
2.2 Project-Independent Dataol 2-19
221 People and Services ool 2-19
222 COMPULET .. \tiit it 2-19
Section 3—SEL Data From a Data Collection Viewpoint 3-1
3.1 DataCollection Forms, 3-1
3.1.1 Schedule and EstimatesForms 3-1
312 Weekly Rate DataForms 3-2
3.1.3 ProductDataForms 3-5
3.14 Project Development Completion Forms 3-9
3.15 Project DataForms 3-12
3.1.6 Project Development Status Forms 3-13
Section 4—A Logical View of the SEL Database 4-1
4.1 Database Table and View Definitions 4-1
10004437L vil

TABLE OF CONTENTS (Cont’d)

4.2

4.3

Relationships and Constraints Among Database Tables
4.2.1 Relationships Among Tables
422 Descriptions of Support Data Tables
423 Database Constraintscooovn... ...
Mapping the Conceptual View to the Logical View

Section S—Accessing the SEL Database

5.1
5.2
53

54

Ad Hoc Database Queries e,

531 Connecting to the Database

532 Basic Select Statement
533 Ordering the Retrieved Data
534 Limiting the Number of Rows Retrieved
5.35 GroupFunctions
536 Retrieving from More Than One Table—Joins
537 Retrieving from More Than One Table—Subqueries . .
5.3.8 Views—aA Shortcut for Commonly Used Joins
5.39 Spooling Output and Saving Queries
QueryLibrary

Appendix A—Encoded Fields and Allowable Values
Appendix B—Sample Optimized Database Queries
Appendix C—SEL Data Collection Forms

Appendix D—Data Definition Language for the SEL Database

Glossary

Abbreviations and Acronyms

References

Standard Bibliography of SEL Literature

100044371

viil

LIST OF ILLUSTRATIONS

Figure
1-1
2-1

4-2
4-3

100044371

Basic Relational Database Organization 1-3
Conceptual Viewof SELData ot 2-2
Relationships Among Project-Related Tables 4-55
Relationships Among DAMSEL Support Tables 4-56
Relationships Involving Project-Independent Data 4-57

LIST OF TABLES

Table
4-1
4-2

4-4

100044371

SEL Database Tablesand Views 4-3

SEL Database Tables and Views—Technical Specifications ... 4-24
Constraints on Database Tables 4-65
SEL Database Access Paths 4-73

SECTION 1—INTRODUCTION

The Software Engineering Laboratory (SEL) was established in 1976 to support research in
measurement and evaluation of the software development process. Under its sponsorship,
numerous experiments have been designed and executed to study the effects of applying
various tools, methodologies, and models to software development efforts in flight dynamics
applications. The SEL is a cooperative effort of the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC), Computer Sciences Corpora-
tion (CSC), and the University of Maryland.

To support the research activities it sponsors, one of the major functions of the SEL is the
collection of detailed software engineering data, describing all facets of the development
process, and the archival of this data for future use. To this end. the SEL has created and
maintained an online database for the storage and retrieval of software engineering data. The
SEL database has been designed and implemented as a relational database under the
ORACLE relational database management system (RDBMS) on the Systems Technology
Laboratory (STL) VAX 11/780 at GSFC. Since ORACLE provides the facilities for organiz-
ing, storing, maintaining, and retrieving data, SEL database users do not have to understand
the physical organization of the data. They need only understand the logical structure of the
database in order to query, calculate, and manipulate a variety of information. SEL database
users include those involved in software engineering research, managers of current flight
dynamics development efforts, and those involved in the collection of SEL data and mainte-
nance of the database.

This document is intended as a reference guide for all SEL database users. Its purpose is to
provide general users with high-level information about data collected by the SEL and how
they are stored in the database. Information on how to access the data via various access paths
is also provided. For database maintenance personnel, this document provides in-depth
information about the structure of the database, including table and field definitions, indexes
used, and constraints among data items.

Since this document is intended to be referenced by a broad spectrum of users. it is organized
in increasing levels of specification. Section 1.1 describes general relational database con-
cepts and terminology for readers who are not familiar with relational database systems.
Section 2 of the document presents an introduction to the types of data that are stored from a
conceptual point of view (i.e., without regard to physical or logical storage characteristics).
Section 3 discusses the organization of the data with respect to their sources and the form in
which they are collected. The conceptual view in Section 2 and the data collection view in
Section 3 are then mapped into a logical view of the database design. This design is presented
in Section 4. The logical design of the database is the lowest level of detail required to
understand how to access the database. Details of the physical implementation are hidden
from the user via the ORACLE RDBMS. Section 5 discusses various ways to actually access
the SEL database. Appendix A lists all codes used in the database: Appendix B presents

10004437L 1-1

sample database queries; Appendix C presents the SEL data collection forms; and Appen-
dix D contains the data definition language (DDL), which specifies the definitions and
constraints of the database tables and views.

1.1 BASIC RELATIONAL DATABASE CONCEPTS

In relational database terminology, the basic structure for storing items of data is the table, or
relation. A table consists of a variable number of rows. There is no predefined order in which
the rows of a table are stored. Each row consists of a fixed number of columns, or fields.
Columns are identified by column names and are defined to contain values of a specific data
type (e.g., character, number, date). A particular column or group of columns is defined as a
unique index for the table. This means that the values of those columns will be unique for
every row in the table. There may also be other columns that are indexed but do not have to be
unique across all rows. Certain columns exist only to define the relationship of a given row to
rows in other tables. If the values in a column from one table are drawn from the same domain
as the values in a column from another table, the data in the two tables are related where rows
in each table share a common value. This basic organization is illustrated in Figure 1-1.

Figure 1-1 contains two tables, PROJECT and PROJ_SUB. The row in the PROJECT table
for the project named XYZ is related, via common values in the project number columns
(PROJ_NO), to a group of rows in the PROJ_SUB table representing XYZ'’s subsystems.
The primary key in the PROJECT table is the project name column (PROJ_NAME), while
the primary key in the PROJ_SUB table is the combination of the project number
(PROJ_NO) and the subsystem prefix (SUB_PRE) columns. For more details, Reference 6
provides a good overview of relational database concepts. For ORACLE-specific informa-
tion, References 4 and 5 provide an overview of the ORACLE RDBMS as well as a detailed
description of the ORACLE structured query language (SQL).

Previous versions of this document mentioned that the SEL database contained clusters. The
SEL database no longer has any clusters and all reference have been removed.

10004437L 1-2

TABLE: PROJECT

COLUMNS

COLUMN\'(\
NAMES PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS

(XYZ 101 SIMULATOR ACT_DEV
ROW {

.

TABLE: PROJ_SUB
PROJ_NO SUB_PRE SUB_DATE

101
101

102

Figure 1-1. Basic Relational Database Organization

10004437 1-3

10004437-g014

SECTION 2—A CONCEPTUAL VIEW OF SEL DATA

This section presents an overview of the types of software engineering data that are stored in
the SEL database from a conceptual point of view. The fundamental entity about which SEL
data are collected and stored is the project. Project data compose the bulk of the data in the
database and are presented in Section 2.1. A relatively small portion of the database is
allocated to the storage of support data, such as computer and personnel names. These data,
which are not associated exclusively with individual projects, are referred to as project-inde-
pendent data throughout this document. Section 2.2 contains detailed descriptions of these
data. The data elements described in this section are tagged with the reference identifiers
used in Sections 3 and 4.

Figure 2-1 shows the major data items that make up both the project data and the project-
independent data. This conceptual view of the data is later mapped into thelogical view of the
SEL database discussed in Section 4. In the figure, data items flagged with asterisks are
collected both during development and maintenance stages. The rest are collected only in
projects’ development stages.

2.1 PROJECT DATA

Software development in the area of flight dynamics at GSFC is performed in distinct units
referred to by the SEL as projects. A project exists for a specified period of time that spans the
life of a particular software product. The life of a project comprises two primary stages: the
development stage and the operations and maintenance stage. The majority of the data
collected by the SEL cover the development stage of the lifespan, although some data, such
as resources and changes, are also collected during the maintenance stage. The following
sections describe data types that characterize the development stage as well as data types that
are captured during the maintenance stage. In addition, each project has associated with it the
following general information that defines and identifies the project:

P1 Name of the project; a unique identifier distinguishing it from other projects

P2 Type of project; indicator used to describe the nature of the application and to
identify projects with similar applications for the purpose of comparison

P3 Current status of the project; whether it is in the development stage or the
maintenance stage or whether its life cycle has been completed or discontinued

P4 Miscellaneous descriptive information; this is optional data and may include any
of the following:

e Project’s full name

e Contacts for the project

100044371 2-1

eleq 13S Jo MaJA jenjdeouo) “L-g einbi4

-
(=]
£l sawwN SINVYN STAVN
S| wainawoo SI0IAHIS JINNOSH3Id
k!
o [|
viva
IN3ION3JIANI
-103rOHd
HLMONS 321 ANV 30VSN J0V8N 39vsN
. JUNLONYLS H3LNAWOD $30IAH3S HIMOANYH.
SNLVIS SOILSIVIS SNOILLYNTVAZ SolL 30V8N
INIWJOT3A3A IVNI4 INILOIrENS SIONVHO. .w_mw%%mzo 30HNOS3Y SALYWILSI $31NAFHOS
viva
103rOHd

2-2

10004437L

2.1.1

e Language(s) used in a project

e Computer on which project is being developed and operated

e Computer accounts to be monitored by the SEL

e Project task numbers and corresponding years

o SEL forms collected for the project

e General notes on project or data peculiarities

e Name of the project controlled source library

e Tools used for collecting project growth data

e Project closeout status

e Types of data that are currently stored in the database for the project
Schedules

Project schedules divide the lifespan of a project into a series of nonoverlapping, contiguous
time periods referred to by the SEL as phases. During the development stage, the phases
correspond closely to the primary type of development activity being performed at any given
time. The transition from one phase to the next is signaled by project milestones, such as the
critical design review (CDR). The schedules stored in the database are supplied by personnel
involved in managing the projects being monitored. An initial schedule is submitted at the
start of the project and updated every 6 to 8 weeks thereafter until the completion of the
project’s development stage. All schedules submitted are stored in the database along with
their submission dates to provide a historical trace of schedule changes. Schedule data exist
in sets that include the following:

P1
P5
P6
P7
P8
P9
P10
P11
P12

10004437L

Project name

Date on which the schedule was recorded

Requirements definition phase start and end dates

Design phase start and end dates

Implementation (code and test) phase start and end dates

System test phase start and end dates

Acceptance test phase start and end dates

Cleanup phase start and end dates

Maintenance stage start and end dates (not collected on current Project Esti-
mates Form (PEF), but data exist for some projects)

2-3

Phase dates are subject to certain constraints, such as the requirement that they always fail on
a Saturday. Also, depending upon the life-cycle model followed, the size and level of
formality of the project, and the SEL’s research needs, some of the phase dates may not be
supplied for particular projects. Reference 1 presents a more thorough discussion of the SEL
definition of phase dates and the constraints to which they must adhere.

2.1.2 Estimates

At various points in the life of a project, estimates are made of certain project characteristics
whose actual values do not become available until the end of the development phase. These
projections are made as part of the process of planning the project and monitoring its
progress. As the project proceeds, the estimates are updated regularly to reflect such factors
as system growth and changes in staffing patterns. Thus, toward the end of the development
phase, the at-completion estimates converge on the actual final project characteristics. The
sets of estimates collected by the SEL and stored in the database include the following:

P1 Project name

P13 Date on which the set of estimates was recorded

P14 Number of subsystems in the software product

P15 Number of components in the software product

P16 Total source lines of code (SLOC) in the software product
P17 Total SLOC for all reused components in the software product
P18 Total SLOC for all modified components in the software product
P19 Total SLOC for all new components in the software product
P20 Programmer hours spent on the project

P21 Management hours spent on the project

P22 Services hours spent on the project

The terms “subsystem” and “component,” used above and elsewhere in this document, have
specific definitions in the SEL environment. In general, subsystems are a mutually exclusive
partitioning of the components that constitute a software system. Components, or modules,
are individual routines that are maintained in separate files. (See Reference | for a more
detailed description of these concepts.)

The SLOC estimates refer to total lines of source code, including executable and nonexecut-
able statements, comments, and blank lines. The total lines estimate is expected to be the sum
of the old, modified, and new lines estimates. The programmer hours estimate is a projection
of the total technical effort to be spent on the project. Similarly, the management hours

10004437L 2-4

estimate is a projection of the total hours to be charged to project management. The services
hours estimate is a projection of the hours to be spent by support personnel on the project.
This includes secretaries, technical editors, word processors, couriers, and project control
personnel.

2.1.3 Resource Use

Throughout the development stage of a project, the use of personnel and computer resources
is measured and stored on a weekly basis. However, only the personnel resource use is
measured when a project starts its maintenance phase.

2.13.1 MANPOWER
Development

Each week, the staff resources expended on a given project are recorded and stored in the
database. Hours are stored for each person who does technical work or directly manages the
project during the particular week in question. These hours are categorized by the type of
development activity being performed. Thus, for any given project, week, and programmer,
the following data are stored:

P1 Project name
P23 Week ending date; this date is always a Friday

P24 Personnel name; name of the person performing technical or direct management
work on the project

P25 Predesign hours; hours worked on the project before commencement of actual
design work (requirements definition, requirements analysis, etc.)

P26 Create design hours; hours spent performing software design activities (creating
structure charts, writing program design language (PDL), etc.)

P27 Readandreview designhours; hours spent reading and reviewing design materi-
als (peer reviews, design walkthroughs, etc.)

P28 Write code hours; hours spent developing source code from design materials
(coding at desk, entering code at terminal, etc.)

P29 Read and review code hours; hours spent reading code for any purpose except
isolation of errors (peer review, code walkthroughs, desk checks, etc.)

P30 Test code unit hours; hours spent testing individual code units (planning and
executing test cases, writing test drivers and stubs, etc.)

P31 Debug hours; hours spent isolating errors and planning corrections (does not
include actually correcting errors)

P32 Integration test hours; hours spent planning tests that integrate system
components (writing and executing system tests, €tc.)

100044371 2-5

P33 Acceptance test hours; hours spent running and supporting acceptance testing of
the software

P34 Other hours; hours that do not fall into any of the above activities (management,
training, documentation, etc.)

The hours that are recorded in the various activities for a given programmer during a given
week add up to the total hours worked on the project during that week by that programmer.
Manpower hours are recorded to the nearest tenth of an hour. For projects that began before
June 1987, the activity hour items P25 through P34 may be further classified by being
associated with the subsystem on which the work was performed. In this case, the sum of the
hours recorded in the various activities and associated with particular subsystems plus the
hours charged to various activities and not associated with particular subsystems represents
the total hours worked during that week by that programmer. An example of the latter case is
as follows:

Programmer: J. Doe Week ending: 30-Nov—87
Integration test hours (P32) for subsystem XYZ: 5.0
Integration test hours (P32) for subsystem ABC: 10.0
Write code hours (P28) for subsystem ABC: 15.0
Other hours (P34) (no subsystem): 10.0
Total hours worked: 40.0

In addition to and independent of these activity hours, programmer hours for the week are
collected for the following activities:

P35 Rework hours; hours spent reworking any part of the system due to errors or
other unplanned changes (includes rework of code, design, testing, and all hours

spent debugging)

P36 Enhancing, refining, and optimizing hours; hours spent improving efficiency or
clarity of design, code, or documentation (not due to unplanned changes)

P37 Documenting hours; hours spent creating any form of documentation on the
system (system descriptions, user’s guides, in-line comments, etc.)

P38 Reuse hours; hours spent attempting to reuse components of this or other
systems

The hours recorded in the above categories do not adhere to the constraint that their sum must
represent the total hours worked by a given programmer during a given week.

Certain projects in the database were developed using a cleanroom methodology. Conse-
quently, the types of development activities recorded for these projects are different from

100044371 2-6

those mentioned above. However, staff resources expended on these projects are still re-
corded weekly and hours are still stored for each person who does technical work or directly
manages the project. The following are the data stored for projects using a cleanroom

methodology:

P1 Project name

P23 Week ending date; this date is always a Friday

P24 Personnel name; name of the person performing technical or management work
on the project

P157 Predesign hours; hours worked on the project prior to the actual design (such as
requirement analysis, etc.)

P158 Pretest hours; hours worked on developing test plans and building test environ-
ments (compiling components, building libraries, defining input, etc.)

P159 Create design hours; hours spent developing system, subsystems, or
components design (state machine representation, data and stepwise refinement,
PDL, etc.)

P160 Verify and review design; hours spent verifying and reviewing design ina group,
including design meetings, formal and informal reviews, or walkthroughs

P161 Write code hours; hours spent coding system components (coding at desk,
entering code at terminal, etc.)

P162 Read and review code hours; hours spent reading code for any purpose other
than isolation of errors (code verification)

P163 Independent test hours; hours spent generating and executing tests of system
components (by independent tester)

P164 Response to software failure report (SFR) hours; hours spent resolving a tester-
reported problem (isolating a reported problem and developing a solution)

P165 Acceptance test hours; hours spent running and supporting acceptance testing of
the software

P166 Other hours; hours spent on activities not covered above (management,

meetings, training, documentation, etc.)

In addition to and independent of these cleanroom development activity hours, any weekly
programmer hours spent understanding the methodology are captured under the following

category:

P167

Methodology Understanding and Discussion; hours spent learning, discussing,
or receiving training in cleanroom-related methods and techniques

Reference 1 presents a more detailed discussion of the various activities that categorize
manpower effort hours.

100044371

2-7

Maintenance

When a project completes its development cycle and starts its maintenance stage, the use of
personnel resources is also measured and stored. Each week, the regular maintainers’ re-
sources expended on a given maintenance project are recorded. Hours are stored for each
person who does technical work or directly manages the project. The hours are categorized
by both the class of maintenance and by the type of activity being performed. Thus, for any
given maintenance project, the following data are stored:

P1
P23
P24

P168

P169

P170

P171

P172

P173

P174

P175

P176

P177

2.13.2

Project name
Week ending date; this date is always a Friday

Personnel name; name of the person performing technical or management work
on the maintenance project

Correction class hours; hours worked on all maintenance associated with a
system failure

Enhancement class hours; hours spent on all maintenance associated with
modifying the system due to a requirements change

Adaptation class hours; hours spent on all maintenance associated with modify-
ing a system to adapt a change in hardware, software, or environment
characteristics

Other class hours; hours spent on all maintenance that do not fall into any of the
above classes (management, meetings, etc.)

Isolation activity hours; hours spent on understanding the failure or request for
enhancement or adaptation

Change design activity hours; hours spent on redesigning the system

Implementation activity hours; hours spent on changing the system to complete
the necessary change (hours include changing not only the code, but the
associated documentation as well)

Unit or system test activity hours; hours spent on testing the changed or added
component

Acceptance or benchmark test activity hours; hours spent on acceptance or
benchmark testing

Other activity hours; hours that do not fall into any of the above activities
(management, meetings, etc.)

SERVICES

Each week during the development stage of a project, services hours are recorded and stored
in the database. These are hours spent by support personnel who are not directly involved in

100044371

2-8

the technical aspects of the project. The categories of services hours recorded each week fora
given project are as follows:

P1 Project name
P23 Week ending date; this date is always a Friday

P39 Technical publications hours; hours spent by technical editors, word processors,
graphic artists, etc., in preparing technical documentation for the project

P40 Secretary hours; hours spent by secretarial personnel in direct support of the
project

P41 Librarians; hours spent by data librarians in support of the project, e.g., data
entry, tape generation {not collected on current Service/Products Form (SPF)
but data exist for some old projects)

P42 Project management; hours spent by persons performing management activities
in support of the project, but who are not directly responsible for the project’s
management

P43 Other; hours spent in support of the project by personnel who do not qualify in
one of the support service categories above

Service hours are not recorded for individuals. Rather, the sum of the hours reported by all
persons performing a particular support activity during a given week is recorded.

2.13.3 COMPUTER

Computer resources are the third type of resource data recorded and stored in the database on
a weekly basis. During the portion of the development stage when programmers are using
computer resources to create the resulting software product, the number of computer runs
and central processing unit (CPU) hours used are monitored. If different portions of the
development effort are performed on different machines, hours and runs are recorded for
each of them. Thus, for each week of a given project, the following computer resource data
are stored:

P1 Project name
P23 Week ending date; this date is always a Friday
and for each computer being used at the current time:
P44 Computer name; name uniquely identifying the development computer
P45 CPU hours used

P46 Number of runs executed

10004437L 2-9

The number of runs recorded is measured as either the number of interactive logons by
project members, the number of batch jobs submitted by project members, or both. On some
development computers, the accounting reports used for obtaining the resource data show
separate CPU time and number of run statistics for interactive sessions and batch jobs. In
these cases, the two are recorded separately under distinct computer names. On other ma-
chines, the accounting reports show total CPU time and number of runs without distinguish-
ing between batch jobs and interactive sessions. In these cases, only the single combined
figures are recorded.

2.1.4 Product Characteristics

A fourth class of project-related data characterizes the software product that is generated
during the development stage. There are two primary types of product data: that which
captures the static composition of the system at any given point in time, and that which
captures the dynamic properties of system growth and change.

2.14.1 STRUCTURE AND SIZE

The static composition of the system is recorded as the system is produced. This consists of
the partitioning of the system into subsystems and components, along with descriptive
information about each. As mentioned earlier, the SEL defines subsystems as a mutually
exclusive partitioning of the system components. For each subsystem in a project, the
following data items are stored:

P1 Project name

P47 Subsystem prefix; mnemonic prefix used in naming components that belong to
the subsystem

P48 Subsystem name; descriptive name describing the purpose of the subsystem

P49 Subsystem function; indicator used to describe the nature of the subsystem and
also to identify similar subsystems for the purpose of comparison

P50 Date on which the subsystem information was recorded

Subsystem prefixes are unique within a given project. Each subsystem comprises multiple
components. Components are defined as modules or routines that are maintained in separate
files as individual configuration items. Each component is associated with exactly one
subsystem. The following descriptive information is stored for each component of the
system:

P24 Programmer name; name of programmer who created the component
P1 Project name

P47 Subsystem prefix; prefix identifying the subsystem to which the component
belongs

10004437L 2-10

P51 Component name; descriptive name used in identifying the component

P52 Component date; date on which the component information was recorded by the
programmer

P53 Creation date; date on which the component first became part of the system
configuration (i.e., was moved into the controlled source library)

P56 Origin; source of the component (i.e., old code, modified old code, new code)

P57 Difficulty; discrete rating on a scale of 1 (easiest) to 5 (most difficult) of the
difficulty in creating the component

P58 Type; indicator used to classify components of similar nature for comparison
P59 Purpose; indicator of the component’s purpose
2142 GROWTH

Growth data recorded in the SEL database capture the dynamic nature of the evolving
software product. These data are obtained by taking snapshots of the controlled source
library of the project at regular intervals (weekly for development projects, monthly for
maintenance projects). The data elements captured each week provide a historical perspec-
tive on system size through the development stage of the life cycle. The information recorded
is as follows:

P1 Project name

P23 Week ending date; this data is always a Friday

P60 Lines of code; count of the total lines of code in the project’s controlled source
library

P61 Components; count of the number of components in the project’s controlled
source library

P62 Changes; count of the number of changes that have occurred in the project’s
controlled library (each time a new component is added to the library, it is
counted as one change; each time a component is updated in the library, it is
counted as another change)

2.1.5 Changes

Development

Detailed information is recorded in the database for each change that takes place in a
project’s configured software library (or libraries). A change is viewed by the SEL as an
update to one or more system components for a particular specific purpose. Typical purposes
for changes include correcting an error, improving the efficiency of a particular operation, or
implementing an enhancement. The following data items are stored for each change:

10004437L 2-11

Pl

P63
P24
P65
P66

P67

P68

P69

P70

P71

P72

P73

P74
P75

P76
P77

P78

P79

P80

100044371

Project name

Change number; number uniquely identifying each change in the database
Programmer name; name of the programmer implementing the change
Change date; date on which the change information was recorded

Effort required to isolate the change; time spent determining what was necessary
to make the change

Effort required to implement the change; time spent actually designing, coding,
and testing the change

One component affected; flag indicating whether the change involved updating
only one component

Involved Ada; flag indicating whether the change resulted from using the Ada
language

Examined other components; flag indicating whether components other than
those changed were examined when performing the change

Parameters passed; flag indicating whether the change required awareness of
data communicated between components

Date change determined; date on which the need for the change was initially
determined

Date change completed; date on which the change was implemented into the
system

Number of components changed; count of the changed components

Number of components examined; count of the components examined in the
change process that were not changed themselves

Change type; indicator used to classify changes by particular types

Error source; indicator of the source of the error for changes where the change
type (P76) is error correction

Error class; indicator of the class of error for changes where the change type
(P76) is error correction

Commission error; for changes where the change type (P76) is error correction,
flag indicating whether something incorrect was included in the code

Omission error; for changes where the change type (P76) is error correction, flag
indicating whether something was left out of the code

2-12

P81 Typographical error; flag indicating whether an error was typographical in
nature for changes where the change type (P76) is error correction

P82 Ada documentation; flag indicating whether the Ada documentation clearly
explained the features that contributed to an error (P76) attributed to the use of
Ada (P69)

P83 Ada cause; indicator of the cause of an error (P76) attributed to the use of Ada
(P69)

P84 Changed components; subsystem prefixes and names of the components that
were changed

P85 Ada features; list of the Ada features that were involved in a change (P76) in
which the use of Ada was a contributing factor (P69)

P86 Adaresources; list of resources used in resolving an Ada-related error (P69,P76)

P87 Ada tools; list of software tools used in resolving an Ada-related error (P69,P76)

Maintenance

Detailed information is also recorded for each change that takes place in a project’s con-
trolled library during the maintenance stage. The definition of change is the same as men-
tioned in the change (development) section. The following data items are stored for each

change:
P1
P24
P65
P178
P179
P180
P181

P182

P183

P184

10004437L

Pfoject name

Programmer name; name of the programmer implementing the change
Change date; date on which the change information was recorded
Operational Software Modification Report (OSMR) number

Change type; indicator used to classify changes by particular types
Change cause; indicator used to classify the cause of a particular change

Effort required to isolate the change; time spent determining what was necessary
to make the change

Effort required to implement the change; time spent actually designing, coding,
and testing the change

Changed object types; list of objects that have been changed as a result of this
change

Change characteristic; indicator used to classify the characteristic of this change

2-13

P185

P186
P187
P188
P189
P190
P191
P192
P193

2.1.6

Number of SLOC that have been newly added (the total SLOC includes blanks
and comments)

Number of SLOC that have been modified

Number of SLOC that have been deleted

Number of components that have been newly added
Number of components that have been modified
Number of components that have been deleted

Number of the added components that are totally new
Number of the added components that are totally reused

Number of the added components that are reused with modifications

Subjective Evaluations

When a project completes its development stage, the retrospective subjective opinions of
personnel involved in the management of the project are collected and stored in the database.
This includes rating a set of project characteristics on a scale of 1 to 5 and indicating what
software engineering tools were used on the project. Unless otherwise specified, the scale on
the measures ranges from 1 = low to 5 = high. The subjective data items recorded are as

follows:
Pl
P88
P89
P90
P91
P92
P93
P94
P95
P96
P97
P98

100044370

Project name

Problem complexity

Schedule constraints (loose = 1, tight = 5)
Stability of requirements (unstable = 1, stable = 5)
Quality of requirements

Documentation requirements

Rigor of requirements reviews

Development team ability

Development team application experience
Development team environment experience
Stability of development team (unstable = 1, stable = 5)

Management performance

2-14

P99
P100
P101
P102
P103
P104
P105
P106
P107
P108

P109
P110
P111
P112
P113
P114
P115
P116
P117
P118
P119
P120
P121
P122
P123

2.1.7

Management application experience

Stability of management team (unstable = 1, stable = 5)
Project planning discipline

Degree to which plans were followed

Use of modem programming practices

Discipline in formal communication

Discipline in requirements methodology

Discipline in design methodology

Discipline in testing methodology

List of tools used on project (not a numerical rating, but an actual list of tool
names)

Use of test plans

Discipline in quality assurance

Discipline in configuration management
Access to development system

Ratio of developers to terminals (low = 5, high= 1)
Memory constraints ‘
System response time (poor = 1, very good = 5)
Stability of hardware and support software
Effectiveness of tools used

Agreement of software with requirements
Quality of software

Quality of design

Quality of documentation

Timeliness of delivery

Smoothness of acceptance testing

Final Statistics

When the development stage of a project is complete, the actual values of parameters that
were estimated earlier and of additional parameters that were not estimated are recorded. In

10004437L

2-15

addition, the project source code is run through a static analysis tool, and statistics are
recorded for each component of the system. The data items that constitute final project
statistics are as follows:

P1

100044370

Project name

Date on which the final statistics were recorded

Actual requirements definition phase start and end dates

Actual design phase start and end dates

Actual code and test (implementation) phase start and end dates
Actual system test phase start and end dates

Actual acceptance test phase start and end dates

Actual cleanup phase start and end dates

Maintenance stage start and end dates

Total technical and management hours expended on the project
Total service hours expended on the project

Computer name

CPU hours used _

Number of runs executed, for each computer used on the project
Number of subsystems in the system

Number of components in the system

Number of changes made to system components

Number of pages of documentation produced for the system
Total SLOC for all components in the system

Total SLOC for all components in the system that were classified as new

Total SLOC for all components in the system that were classified as slightly
modified

Total SLOC for all components in the system that were classified as extensively
modified

Total SLOC for all components in the system that were reused from other
systems without modification

P145
P146
P147
P148

P214

P149

P150

P151

P152

P215

P153

P216
P217

P218

P219

P220

Total number of comment lines for all components in the system
Total number of executable components in the system
Total number of newly created executable components in the system

Total number of executable components in the system that were obtained from
other systems and slightly modified for this project

Total number of executable components in the system that were obtained from
other systems and extensively modified for this project

Total number of executable components in the system that were reused from
other systems without modification

Total number of executable statements for all FORTRAN components in the
system

Total number of executable statements for all FORTRAN components in the
system that were classified as new

Total number of executable statements for all FORTRAN components in the
system that were classified as slightly modified

Total number of executable statements for all FORTRAN components in the
system that were classified as extensively modified

Total number of executable statements for all FORTRAN components in the
system that were reused from other systems without modification

Total number of statements for all components in the system

Total number of statements for all components in the system that were classified
as new

Total number of statements for all components in the system that were classified
as slightly modified

Total number of statements for all components in the system that were classified
as extensively modified

Total number of statements for all components in the system that were reused
from other systems without modification

and for each component in the system:

P154

P155

100044371

Number of executable statements in the component (for FORTRAN
components only)

Number of SLOC in the component (includes comments and blank lines)

2-17

P156

pP221

p222

2.1.8

Number of comment lines in the component (for FORTRAN or Ada
components only; does not include blank lines)

Number of statements in the component (for FORTRAN or Ada components
only)

Final origin category assigned to the component

Development Status Data

The status of active projects is monitored throughout project development and recorded in
the SEL database. The data items are recorded on a biweekly basis for each active project.
There are two types of development status data: target data and measurement data. The target
data represent the goal or target value. The measurement data represent a value measuring
the progress toward the target value. The following data items are stored:

P1
P23
P24
P195
P196
P197
P198
P199
P200
P201
P202

P203
P204
P205
P206

P207

100044371

Project name

Week ending date; this date is always a Friday

Name of originator

Total number of components to be designed

Number of cbmponents designed as of the week ending date
Total number of components to be coded

Number of components coded as of the week ending date
Total number of separate system tests planned

Number of system tests executed at least one time

Number of system tests passed

Total system test runs, including reruns (not collected on current Development
Status Form (DSF), but data exist for some projects)

Total number of separate acceptance tests planned
Number of acceptance tests executed at least one time
Number of acceptance tests passed

Total acceptance test runs, including reruns (not collected on current DSF, but
data exist for some projects)

Total number of discrepancies reported

2-18

P208 Total number of discrepancies resolved

P209 Total number of specification modifications received
P210 Total number of specification modifications completed
P211 Total number of requirements questions submitted

P212 Total number of requirements questions answered by analysts

2.2 PROJECT-INDEPENDENT DATA

This section describes two types of data stored in the database that represent real-world
entities, yet are not directly related to a particular project, as were the items in the previous
section. The data stored about these items are not extensive. Rather, their primary function is
to identify specific instances of resources when recording project data.

2.2.1 People and Services

The first class of support entities consists of people and services. Each person for whom data
are recorded is represented in the database by the following data items:

M1 Form name; abbreviated version of the person’s name used on data collection
forms (see Section 3)

M2 Full name; person’s complete first and last name
A M3 Entry date; date on which personnel information was entered into the database

Service personnel are stored in the database generically; that is, the same information listed
above is stored as only one generic entry for a given class of service personnel. Thus, for
example, the personnel entry for secretary refers collectively to anyone performing secre-
tarial work on a monitored project.

2.2.2 Computer

The other class of support entities is computers. Each computer for which resource hours and
runs are recorded is represented in the database by the following data items:

M4 CPU name; abbreviated version of the computer name used on data collection
forms (see Section 3)

M5 Computer full name; longer, more descriptive name for the computer

100044371 2-19

SECTION 3—SEL DATA FROM A DATA COLLECTION
VIEWPOINT

This section describes the data collection forms in their role as sources for the data items
described in Section 2. Many data items entered on the forms map directly to items described
in Section 2. Other items (e.g., form numbers) are unique to the data collection process and
therefore do not appear in Section 2. This section maps the software engineering items in
Section 2 to their sources on data collection forms and describes the data items that are
peculiar to the data collection process.

The following subsections present descriptions for the SEL data collection forms. The data
items described are tagged with reference identifiers corresponding to the identifiers in the
forms that are presented in Appendix C. The identifiers are also used as cross references in
the SEL database access paths (Table 4-4 in Section 4). If an item maps directly to an item in
Section 2, the description consists of the item name followed by the Section 2 identifier for
that item (in parentheses). Otherwise, a more complete description is presented.

3.1 DATA COLLECTION FORMS

3.1.1 Schedule and Estimates Forms

The PEF (Figure C-8 in Appendix C) provides periodic estimates of the development
process and the software product and estimates of the project schedule. The estimates of the
development process consist of staffing projections. The estimates of the software product
involve various estimates of the size of the delivered software. The schedule information
consists of a set of dates on which the various life-cycle phases of the project are scheduled to
start, along with a projected project end date. These estimates reflect the project size and
resource expenditure as of the completion of the cleanup phase.

The PEF is completed by the project leader. It is submitted at the initial entry of the project
into the database and every 6 to 8 weeks thereafter through the development life cycle. The
PEF data fields are described below. Note that the phase date fields contain the start dates of
each of the listed life-cycle phases that apply to the project. The end date for a given phase is
the next phase start date entered on the form, or the project end date if there are no start dates
for subsequent phases.

PEF Fields
D1 Project name (P1)
D2 Form date (P5, P13)
D3 Requirements; estimated requirements definition phase start date (P6)

D4 Design; estimated design phase start date (P7)

10004437L 3-1

D5 Implementation; estimated implementation (code and test) phase start date (P8)
D6 System test; estimated system test phase start date (P9)

D7 Acceptance test; estimated acceptance test phase start date (P10)
D8 Cleanup; estimated cleanup phase start date (P11)

D10 Project end; estimated project end date

D11 Programmer hours (P20)

D12 Management hours (P21)

D13 Services hours (P22)

D14 Number of subsystems (P14)

D15 Number of components (P15)

D16 Total SLOC (P16)

D17 Total SLOC for all new Components (P19)

D18 Total SLOC for all modified components (P18)

D19 Total SLOC for all reused components (P17)

D20 PEF form number; unique identifier distinguishing this form from other PEFs

3.1.2 Weekly Rate Data Forms

The Personnel Resource Form (PRF) or the Cleanroom Personnel Resource Form (CLPRF)
and the SPF provide weekly rate information for the projects in their development stage. The
SPF is also used to provide monthly growth rate information for projects in the maintenance
stage. The Weekly Maintenance Effort Form (WMEF) provides weekly rate information
when a project starts its maintenance stage. The PRF and CLPRF (Figures C-5 and C-6),
capture the actual technical/management expenditure history on the project. These forms
also contain information on the type of activity on which the manpower hours were spent
during the week. A separate section of the forms is used to record hours spent performing
specific activities that are of current interest to the SEL.

The PRF is used to capture personnel hours for most of the SEL-monitored projects. It is
submitted by every person performing either technical or management activities on the
project. This form is completed every Friday for the duration of the project development life
cycle.

PRF Fields
D21 Personnel name (P24)
Dl Project name (P1)
D22 Week ending date (P23)

10004437L 3-2

D23
D24
D25
D26
D27
D28
D29

D30
D31
D32
D33
D34
D35
D36
D37

Predesign hours (P25)

Create design hours (P26)
Read/review design hours (P27)
Write code hours (P28)
Read/review code hours (P29)
Test code unit hours (P30)
Debugging hours (P31)
Integration test hours (P32)
Acceptance test hours (P33)
Other hours (P34)

Rework hours (P35)
Enhancing/refining/optimizing hours (P36)
Documenting hours (P37)
Reuse hours (P38)

PRF form number; unique identifier distinguishing this form from other PRFs

The CLPRF is submitted by personnel who work on projects that use cleanroom methodolo-
gy to do software development. This form is submitted by every person performing either
technical or management activities on the project. This form, like the PRF, is completed
every Friday for the duration of the project development life cycle.

CLPREF Fields
D21 Personnel name (P24)
D1 Project name (P1)
D22 Week ending date (P23)
D199 Predesign hours (P157)
D200 Pretest hours (P158)
D201 Create design hours (P159)
D202 Verify/review design hours (P160)
D203 Write code hours (P161)
10004437L 3-3

D204 Read/review code hours (P162)

D205 Independent test hours (P163)

D206 Response to SFR hours (P164)

D207 Acceptance test hours (P165)

D208 Other hours (P166)

D209 Methodology understanding/discussion (P167)

D210 CLPRF form number; unique identifier distinguishing this form from other
CLPRFs

The WMEF (Figure C-14) is submitted by every person performing either technical or
management activities on a maintenance project. The form is completed every Friday for the
duration of the project’s maintenance phase. In the WMEEF, the activity hours are categorized
as class of maintenance hours and as maintenance activity hours. The sum of the class of
maintenance hours recorded in Section B is equal to the total hours provided in Section A of
the form. The sum of the maintenance activities hours of Section C is also equal to the total
hours provided in Section A. The users can choose one of the two categories to calculate the
total maintenance manpower hours for the project.

WMETF Fields
D21 Personnel name (P24)
D1 Project name (P1)
D22 Week ending date (P23)
D151 Correction hours (P168)
D152 Enhancement hours (P169)
D153 Adaptation hours (P170)
D154 Other hours (P171)
D155 Isolation hours (P172)
D156 Change design hours (P173)
D157 Implementation hours (P174)
D158 Unit test/system test hours (P175)
D159 Acceptance/benchmark test hours (P176)
D160 Other hours (P177)

D161 WMEF form number; unique identifier distinguishing this form from other
WMEFs

100044371 3-4

The SPF (Figure C-11) measures resource expenditure by support personnel, and computer
resource utilization, and is used to create a historical record of product growth over the
course of the project. The SPF is completed by SEL data collection personnel. The form
contains three distinct types of data; the growth history data are obtained by running growth
history monitoring programs on the Flight Dynamics Facility (FDF) mainframes (two
ES/9000s and two NAS 8063s) and the STL VAX Cluster (8820, 11/780, and Micro VAX
3100). The computer information is taken from computer accounting reports from these
computers. Services hours are obtained from task accounting reports. This form is submitted
every week in which support service or computer resources are used or in which product
growth data are available. This form is submitted monthly for all maintenance projects for
which growth data is being monitored.

SPF Fields
D1 Project name (P1)
D22 Week ending date (P23)
D38 Computer name (P44)
D39 CPU hours (P45)
D40 Number of runs (P46)
D41 Number of components (P61)
D42 Number of changes (P62)
D43 Lines of code (P60)
D44 Technical publications hours (P39)
D45 Secretary hours (P40)
D47 Project management hours (P42)
D48 Other hours (P43)

D49 SPF form number; unique identifier distinguishing this form from other SPFs

3.1.3 Product Data Forms

The Subsystem Information Form (SIF), the Component Origination Form (COF), and the
Change Report Form (CRF) provide product data information for the project during its
development stage. The Maintenance Change Report Form (MCRF) provides product data
information for the project when it moves into its maintenance stage.

The SIF (Figure C-13) contains information about the high-level partitioning of the system
into subsystems. A subsystem prefix, a descriptive name, and a subsystem function should be

100044371 3-5

specified for each subsystem. The SIF is completed by the project leader. A form is submitted
at the time of the preliminary design review (PDR) and any time thereafter when a new
subsystem is introduced into the design of the system.

SIF Fields ‘
D1
D2
D50
D51
D52

Project name (P1)

Form date (P50)
Subsystem prefix (P47)
Subsystem name (P48)
Subsystem function (P49)

The COF (Figure C-2) records information about a component in the system. Some of the

information

collected are the origin of the component, difficulty of developing the compo-

nent, type of component, and purpose of component. The COF is completed by personnel
who code new system components, modify old components for reuse, or transfer reused
components to the project’s controlled library. A form is completed for each component in
the system at the time when the component is moved into the project controlled source

library.
COF Fields
D21 Programmer Name (P24)
D1 Project Name (P1)
D2 Form Date (P52)
D50 Subsystems Prefix (P47)
D53 Component name (P51)
D54 Date entered into controlled library (P53)
D55 Relative difficulty of developing component (P57)
D56 Origin (P56)
D57 Type of component (P58)
D58 Purpose of executable component (P59)
D59 COF form number; unique identifier distinguishing this form trom other COFs

The CRF (Figure C-1) contains information about the type of change that was made, the
components that were changed, error information if applicable, and Ada-specific informa-

10004437L

3-6

tion if applicable. The CRF is completed by personnel who implement changes to the system
that involve modifying components in the project’s controlled source library. A form is
submitted for each change to the system at the time the changed components are updated in
the project’s controlled source library.

CRF Fields
D21 Programmer name (P24)
D1 Project name (P1)
D2 Form date (P65)
D50 Subsystem prefixes of components changes (P84)
D53 Names of components changed (P84)
D63 Date on which need for change was determined (P72)
D64 Date change was completed (P73)
D65 Effort to isolate change (P66)
D66 Effort to implement change (P67)
D67 Type of change (P76)
D68 Change to one component (P68)
D69 Look at any other components (P70)
D70 Aware of parameters (P71)
D71 Source of error (P77)
D72 Class of error (P78)
D73 Omission error (P80)
D74 Commission error (P79)
D75 Transcription error (P81)
D76 Did Ada contribute to the change (P69)
D77 Ada features involved (P85)
D78 Documentation understandable (P82)

D79 Which statement best describes the cause of the Ada error (P83)

100044371 3.7

D80
D81
D§2

Which resources provided the information needed to correct the error (P86)
Which tools provided aided in correction of the error (P87)

CRF form number (P63)

The MCREF (Figure C4) contains information about the type of change that was made to the
components in a project’s maintenance controlled library. This form is submitted whenever
the maintenance programmer has completed the work associated with a particular OSMR.

MCREF Fields
D21 Programmer name (P24)
D162 OSMR number (P178)
D1 Project name (P1)
D2 Form date (P65)
D163 Type of change (P179)
D164 Cause of change (P180)
D165 Effort to isolate change (P181)
D166 Effort to implement change (P182)
D167 Changed objects (P183)
D168 Change characteristic (P184)
D169 Number of lines of code added (P185)
D170 Number of lines of code changed (P136)
D171 Number of lines of code deleted (P187)
D172 Number of components added (P188)
D173 Number of components changed (P189)
D174 Number of components deleted (P190)
D175 Number of added components that are totally new (P191)
D176 Number of added components that are totally reused (P192)
D177 Number of added components that are reused with modifications (P193)
D178 MCRF form number; unique identifier distinguishing this form from other
MCRFs
100044371 3-8

3.14

Project Development Completion Forms

The Project Completion Statistics Form (PCSF) and the Subjective Evaluation Form (SEF)
provide project completion information for projects that have completed development and
have been delivered to maintenance and operations. The PCSF (Figure C-7) is used to record
the final development statistics for the project. This information includes the actual project
resource expenditures, project schedule, and the software product size.

The PCSF is completed by SEL personnel and is verified by the project leader. It is com-
pleted during “closeout”, a process of project data validation and verification. The PCSF
data fields are described below. Note that, as in the PEF, the phase date fields contain the start
dates of each of the listed life-cycle phases that apply to the project. The end date for a given
phase is the next phase start date entered on the form, or the project end date if there are no
start dates for subsequent phases.

PCSF Fields
D1 Project name (P1)
D2 Form date (P124)
D84 Requirements; actual requirements definition phase start date (P125)
D85 Design; actual design phase start date (P126)
D86 Implementation; actual implementation (code and test) phase start date (P127)
D87 System test; actual system test phase start date (P128)
D88 Acceptance test; actual acceptance test phase start date (P129)
D89 Cleanup; actual cleanup phase start date (P130)
D90 Maintenance; actual maintenance stage start date (P131)
D91 Project end; actual project end date
D92 Technical and management hours (P132)
D93 Services hours (P133)
D38 Computer name (P134)
D94 CPU hours (P135)
D95 Number of runs (P136)
D96 Number of subsystems (P137)
D97 Number of components (P138)
10004437L 3-9

D98

D99

D100
D101
D102
D211
D103

D104
D105
D106
D107
D212
D108

D109
D110
D111

D213

D112

D214
D215
D216
D217
D218

D113

1000443701

Number of changes (P139)

Pages of documentation (P140)

Total SLOC (P141)

Total SLOC for all new components (P142)

Total SLOC for all slightly modified components (P143)
Total SLOC for all extensively modified components (P213)

Total SLOC for all old components (reused from other systems without modifi-
cation) (P144)

Comments (P145)

Total executable components (P146)

Total new executable components (P147)

Total slightly modified executable components (P148)
Total extensively modified executable components (P214)

Total old executable components (reused from other systems without modifica-
tion) (P149)

Total executable statements for all FORTRAN components (P150)
Total executable statements for all new FORTRAN components (P151)

Total executable statements for all slightly modified FORTRAN components
(P152)

Total executable statements for all extensively modified FORTRAN compo-
nents (P215)

Total executable statements for all old FORTRAN components (reused from
other systems without modification) (P153)

Total statements (P216)

Total statements for all new components (P217)

Total statements for all slightly modified components (P218)
Total statements for all extensively modified components (P219)

Total statements for all old components (reused from other systems without
modification) (P220)

PCSF form number; unique identifier distinguishing this form from other
PCSFs

3-10

The SEF (Figure C-12) consists of subjective perceptions of persons who were involved in
managing the project with respect to such factors as the use of methodologies, the develop-
ment environment, and the complexity of the problem. The SEF is completed by the project
leader and selected personnel involved in managing the project. The responses from each of
the completed forms are combined and reported on one form. The SEF is submitted when the
final system products have been delivered (end of cleanup phase).

SEF Fields
D1 Project name (P1)
D2 Form date (P13)
D114 Problem difﬁculty or complexity (P88)
D115 Tighmess of schedule constraints (P89)
D116 Stability of requirements (P90)
D117 Quality of specification documents (P91)
D118 Requirements for documentation (P92)
D119 Rigor of formal reviews (P93)
D120 Ability of development team (P94)
D121 Development team experience with application (P95)
D122 Development team experience with environment (P96)
D123 Stability of development team composition (P97)
D124 Project management performance (P98)
D125 Project management experience (P99)
D126 Stability of project management team (P100)
D127 Project planning discipline (P101)
D128 Degree project plans followed (P102)
D129 Modem programming practices (P103)
D130 Disciplined specification modification and question tracking (P104)
D131 Use of requirements analysis methodology (P105)

D132 Use of disciplined design methodology (P106)

100044371 3-11

D133 Use of disciplined testing methodology (P107)

D134 Use of tools (P108)

D135 Use of test plans (P109)

D136 Use of quality assurance procedures (P110)

D137 Use of configuration management procedures (P111)

D138 Degree of access to development system (P112)

D139 Programmers per terminal (P113)

D140 | Development machine resource constraints (P114)

D141 System response time (P115)

D142 System hardware and support software stability (P116)
D143 Software tool effectiveness (P117)

D144 Delivered software supports requirements (P118)

D145 Quality of delivered software (P119)

D146 Quality of design present in delivered software (P120)

D147 Quality and completeness of software documentation (P121)
D148 Timely software delivery (P122)

D149 Smoothness of acceptance testing (P123)

D150 SEF form number; unique identifier distinguishing this form from other SEFs

3.1.5 Project Data Forms

The Project Startup Form (PSF) and Project Messages Form (PMF) are used to record
miscellaneous descriptive information about a project. Both forms are completed by SEL
personnel with information provided by the project leader.

The PSF (Figure C-10) is completed only once at project startup. The PSF information is
obtained at the project startup meeting between SEL personnel and the project leader. The
PSF data are stored as project messages.

PSF Fields
D1 Project name (P1)
D2 Form date

10004437L 3-12

D60 Project type (P2)

D61 Project message type; NOTE_TYPEs of COMPACCTS, COMPSYS,
CONTACTS, FORMSCOL, GENMESS, LANGUAGES, PROJNAME, and
TASKNO (P4)

D62 Project message (P4)

The PMF (Figure C-9) captures general notes about a project, unique characteristics of the
methodologies used, or peculiarities about the project’s data. A PMF can be completed any
time SEL personnel or the project leader feel that something about the project should be
documented. A general message is always entered during project closeout.

PMF Fields
D1 Project name (P1)
D2 Form date
D61 Project message type; NOTE_TYPE of GENMESS (P4)

D62 Project message (P4)

3.1.6 Project Development Status Forms .

The DSF provides project development status information for active projects. The DSF,
(Figure C-3) is used to record such project status information as the number of components
designed and coded and the number of tests performed. The DSF is completed on a bi-weekly
basis by the project leaders of all active projects.

DSF Fields
D21 Name of originator (P24)
D1 Project name (P1)
D22 Week ending date; this date is always a Friday (P23)
D180 Total number of componénts to be designed (P195)
D181 Number of components designed as of the week ending date (P196)
D182 Total number of components to be coded (P197)
D183 Number of components coded as of the week ending date (P198)
D184 Total number of separate system tests planned (P199)

D185 Number of system tests executed at least one time (P200)

100044371 3-13

D186
D138
D189
D190
D192
D193
D194
D195
D196
D197
D198

10004437L

Number of system tests passed (P201)

Total number of separate acceptance tests planned (P203)

Number of acceptance tests executed at least one time (P204)
Number of acceptance tests passed (P205)

Total number of discrepancies reported (P207)

Total number of discrepancies resolved (P208)

Total number of specification modifications received (P209)

Total number of specification modifications completed (P210)

Total number of requirements questions submitted to analysts (P211)
Total number of requirements questions answered by analysts (P212)

DSF form number; unique identifier distinguishing this form from other DSFs

3-14

SECTION 4—A LOGICAL VIEW OF THE SEL DATABASE

This section presents the logical schema of the SEL database. The introduction to relational
databases in Section 1, together with the table descriptions in the following sections, allow
the reader to understand where the data items described in Sections 2 and 3 may be found in
the database. This section also presents some additional information about the way the data
are stored and describes the tables containing database support data. These latter discussions
are intended for the reader who needs to understand the database at a deeper level, such as a
database maintenance programimer.

Section 4.1 defines each table in the SEL database. Section 4.2 describes how the tables are
related to one another and constraints that are imposed on the tables by the semantics of the
SEL data. Section 4.3 maps the data items as defined conceptually in Sections 2 and 3 to each
item’s location in a database table. This section also describes the access path to follow to
reach each end data item.

In addition to the tables in the SEL database on the VAX, there are tables on the personal
computer (PC) that are used for storing and maintaining DSF data. Since the DSF data are
entered and quality assured by using the Database Access Manager for the SEL-PC
(DAMSEL-PC) system, tables for storing DSF data are replicated on the PC. Some addition-
al tables also exist on the PC to store validation data downloaded from the VAX database.
This information is presented in Table 4-2 in a separate PC section. Tables for the VAX DSF
data are described, along with others, both in Tables 4-1 and 4-2.

4.1 DATABASE TABLE AND VIEW DEFINITIONS

The SEL database contains a total of 78 base tables (relations) and 51 views. Base tables are
defined independently of other tables in the sense that no base table is completely derivable
from any other base table. On the other hand, views are virtual tables that are completely
derived from base tables and contain no data of their own. With some restrictions, they can be
treated as base tables. In the SEL database environment, views are used to provide users or
application programmers with amore convenient way to access data items that spread across
more than one base table. Tables 4-1 and 4-2 both present tables and views in the database and
their component fields. Table 4-1 contains only 40 tables and 5 views (on the VAX), and is
intended for all database users.

Table 4-2 contains additional tables and views that are mainly used for data entry, system
maintenance, and project closeout, and are not relevant to general users. Table 4-1 presents
the following information for each table and view included:

e Table or view name and a brief description of the data it contains

° For each column included in the table or view:

100044371 4-1

— Column name; an underlined column name is the primary key.for accessing
any table row. If multiple column names are underlined, the primary key is a
concatenation of those columns.

— Column description
— Column type; see data type description following

— Alist of valid values for the column, as applicable; Appendix A contains a
translation of these codes

— One or more reference IDs that provide cross-references to data item de-
scriptions in Sections 2 and 3, as applicable. Columns without reference IDs
are generally intemnal identifiers that link rows in different tables and estab-
lish the relational database.

The data types for columns are CHAR, NUMBER, and DATE. A CHAR column can contain
a sequence of alphanumeric characters. The number in parentheses is the maximum length of
the field. A NUMBER column can contain only the numerals 0 through 9 and the signs +
and —. The first number in the parentheses identifies the width of the numeric field. The
second number (after the comma) identifies the number of places after the decimal point. A
zero indicates that column entries must be integers. A DATE column can contain only a date,
formatted as DD-MMM.-YY. Reference 4 presents a more detailed description of ORACLE
datatypes.

Table 4-2 is intended for users, such as maintenance programmers, who need to know more
of the technical specifications for all 64 base tables and 47 views on the VAX, and 14 base
tables and 4 views on the PC. Provided for each field are name; data type; length (the number
of decimal places is specified if the field is numeric); an indication of whether it is the
primary key or part of the primary key; a specification of whether it can contain null values;
and whether it is indexed. Fields that are identified as being indexed are those to be used
frequently in join operations, in comparison, or in specifying search conditions. Unique
indices exist for all fields or concatenations of fields that must have unique values within a
particular table row. The last column in the table is for the view entries. It specifies the
underlying table from which a particular column within a view is derived.

10004437L 4-2

Table 4-1.

SEL Database Tables and Views (1 of 21)

Table or
View Name

Column Name

Description

Type

Valid Code/ Vaiue

Reference iD

CHANGE

TABLE CONTAINING CRF
INFORMATION FOR ALL
CHANGES

CHANGE_NO

FORM NUMBER OF CRF

CHAR (6)

P63, D82

PROG_ID

ID UNIQUELY IDENTIFY-
ING EACH PROGRAM-
MER (FROM TABLE PER-
SONNEL)

NUMBER
(5. 0}

SUB_DATE

SUBMISSION DATE OF
CRF

DATE

P65, D2

EFF_ONE

YES/NO FLAG TO INDI-
CATE WHETHER
CHANGE WAS MADE TO
ONE AND ONLY ONE
COMPONENT

CHAR (1)

Y, N

P68, D68

EFF_ADA

YES/NC FLAG TO INDI-
CATE WHETHER USE OF
ADA CONTRIBUTED TO
THIS CHANGE

CHAR (1)

Y.N

P69, D76

EFF_ISO_CH

PROGRAMMER'S EF-
FORT TO ISOLATE
CHANGE

CHAR (10)

1HR, 1DAY, 3DAY,
NDAY, NOTDET

P66, D65

EFF_COM_CH

PROGRAMMER'S EF-
FORT TO IMPLEMENT
CHANGE

CHAR (10)

1HR, 1DAY, 3DAY,
NDAY, NOTDET

P67, D66

EFF_PARPA

YES/NO FLAG TO INDI-
CATE WHETHER PRO-
GRAMMER HAD TO BE
AWARE OF PARAME-
TERS PASSED

CHAR (1)

Y,N

P71. D70

EFF_OTHER

YES/NO FLAG TO INDI-
CATE WHETHER PRO-
GRAMMER LOOKED AT
ANY OTHER COM-
PONENTS

CHAR (1)

Y, N

P70, D69

DATE_DETER

DATE ON WHICH NEED
FOR CHANGE WAS DE-
TERMINED

DATE

P72, D63

DATE_COMP

DATE ON WHICH
CHANGE WAS COM-
PLETED

DATE

P73, D64

NUM_COM_CH

TOTAL NUMBER OF
COMPONENTS
CHANGED

NUMBER
(3.0}

P74

NUM_COM_EX

TOTAL NUMBER OF
COMPONENTS EX-
AMINED

NUMBER
2, 0

P75

10004437L

Table 4-1. SEL Database Tables and Views (2 of 21)

Table or
View Name

Column Name

Description

Type

Vaild Code/ Vaiue

Reterence iD

CHANGE
(CONT'D)

CH_TYPE

TYPE OF CHANGE

CHAR (10)

ERRCO, PLANE,
IMPRE, IMPCM,
IMPUS, iINVDE, OPTSA,
ADENC, OTHCH

P76, D67

FORM_TYPE

TYPE OF DATA COLLEC-
TION FORM

CHAR (8)

CRF

STATUS

STATUS OF CRF

CHAR (10)

UNCHK, HCCORRECT,
HCERROR, VERAP.
CLOSED

CHANGE_
COM

TABLE CONTAINING
CHANGED COM-
PONENTS ASSOCIATED
WITH PARTICULAR CRFs

CHANGE_NO

FORM NUMBER OF CRF
FROM TABLE CHANGE

CHAR (6)

P63, D82

COM_NO

ID OF CHANGED COM-
PONENT FROM TABLE
SUB_COM

NUMBER
(7. 0)

CH_
ADAFEAT

TABLE CONTAINING ADA
FEATURES THAT WERE
INVOLVED IN OR CON-
TRIBUTED TO PARTICU-
LAR CHANGES

CHANGE_NO

FORM NUMBER OF CRF
FROM TABLE CHANGE

CHAR (6)

P63, D82

ADA_FEATURE

FEATURES(S) INVOLVED
IN CHANGE IF ADA IS
USED AS DESIGN AND
IMPLEMENTATION LAN-
GUAGE

CHAR (10)

DATATYPE,
SUBPROG, EXCEPT,
GEN, PACK, TASK,
SYSDEPF, OTHER

P8s, D77

CH_ERR_
ARES

TABLE CONTAINING
RESOURCES USED IN
CORRECTING ERRORS
FOR PARTICULAR
CHANGES INVOLVING
ADA

CHANGE_NO

FORM NUMBER OF CRF
FROM TABLE CHANGE

CHAR (6)

P63, D82

ERR_ARES

RESOURCES USED TO
CORRECT ERROR
CAUSED BY USE OF ADA

CHAR (10)

NOTE, REFMAN,
TEAM, MEMORY,
NTEAM, OTHER

Pee, D80

CH_ERR_
GEN

TABLE CONTAINING
ERROR CHARACTER-
ISTICS FOR PARTICULAR
CHANGES IDENTIFIED
AS ERROR CORREC-
TIONS

CHANGE_NO

FORM NUMBER OF CRF
FROM TABLE CHANGE

CHAR (6)

P63, D82

100044371

4-4

Table 4-1.

SEL Database Tables and Views (3 of 21)

Table or
View Name

Column Name

Description

Type

Vaiid Code/ Vaiue

Reference ID

CH_ERR_
GEN
(CONT'D)

ERR_SOURCE

SOURCE OF ERRCR

CHAR (10)

REQMT, FUNSPEC,
DESIGN, CODE,
PRECH, NOTDET

P77.D71

ERR_CLASS

CLASS OF ERROR

CHAR (10)

INIT, LOGIC, INTERI,
INTERE, DATAVAL,
COMPUTE, NOTDET

P78,D72

ERR_COMIS

YES/NO FLAG TO INDI-
CATE WHETHER ERROR
WAS ONE OF COMMIS-
SION

CHAR (1)

Y,N

P79, 074

ERR_TYPO

YES/NO FLAG TO INDI-
CATE WHETHER ERROR
WAS TYPOGRAPHICAL

CHAR (1)

Y.N

P81, D75

ERR_OMIS

YES/NO FLAG TO INDI-
CATE WHETHER ERROR
WAS ONE OF OMISSION

CHAR (1)

Y.N

P80, D73

ERR_ADOC

YES/NO FLAG TO INDI-
CATE WHETHER ADA
COMPILER DOCUMEN-
TATION OR ADA LAN-
GUAGE REFERENCE
MANUAL EXPLAINS IN-
VOLVED FEATURES
CLEARLY

CHAR (1)

Y, N

P82, D78

ERR_ACAUSE

CAUSE OF ERROR IN-
VOLVING ADA

CHAR (10)

INTERACT, INCOF,
FEATUREM,
FEATUREC

P83, D79

CH_ERR_
TOOLS

TABLE CONTAINING
TOOLS USED IN COR-
RECTING ERRORS FOR
PARTICULAR CHANGES
INVOLVING ADA

CHANGE_NO

FORM NUMBER OF CRF
FROM TABLE CHANGE

CHAR (6)

Pe3, D82

ERR_TOOLS

ADA TOOLS USED THAT
AIDED IN DETECTION OR
CORRECTION OF ER-
ROR

CHAR (10)

COMP|, SYMDEB, LSE,
CMS, SCA, PCA
DECTM, OTHER

P87, D81

COMPUTER

TABLE CONTAINING
INFORMATION ABOUT
COMPUTERS USED ON
VARIOUS PROJECTS

CPU_NAME

SHORT. UNIQUE NAME
IDENTIFYING A PARTICU-
LAR COMPUTER

CHAR (10)

P44, P134,
M4, D38

C_FULL_NAME

COMPUTER FULL NAME

CHAR (20)

M5

10004437L

COF

Table 4-1. SEL Database Tables and Views (4 of 21)
Table or
View Name | Column Name Deacription Type Valid Code/ Vaiue Reterence ID
COM_ TABLE CONTAINING
PURPOSE PURPOSES REPORTED
ON COFs FOR EXECUT-
ABLE COMPONENTS
COM_NO |D UNIQUELY IDENTIFY- | NUMBER
ING EACH COMPONENT | (7, 0)
(FROM TABLE SUB_COM)
PURPOSE MAJOR PURPOSE(S) OF | CHAR (10) | IOPRO, ALCOMP, Psg, D58
COMPONENT DATRA, LODEC,
CNTRMOD, INTOP,
ADAPR, ADADA
COM_ TABLE CONTAINING COF
SOURCE INFORMATION FOR ALL
COMPONENTS
COM_NO ID UNIQUELY IDENTIFY- | NUMBER
ING EACH COMPONENT | (7,0)
(FROM TABLE SUB_COM)
PROG_ID 1D UNIQUELY IDENTIFY- | NUMBER
ING EACH PROGRAM- (5, 0)
MER (FROM TABLE PER-
SONNEL)
FORM_NO FORM NUMBER OF COF | CHAR (5) D59
FORM_TYPE TYPE OF DATACOLLEC- |CHAR({6) |COF
TION FORM
STATUS STATUS OF COF CHAR (10) | UNCHK, HCCORRECT,
HCERROR, VERAP,
CLOSED
CREATE_DATE | DATE ON WHICH COM- DATE Ps3, D54
PONENT WAS ENTERED
INTO CONTROLLED LI-
BRARY
ORI_TYPE ORIGIN OF COMPONENT | CHAR (10) | NEW, EXTMO, SLMOD, | P56, D56
oLbuc
COM_TYPE TYPE OF COMPONENT CHAR (10} | INCL, JCL, ALC, Pss8, D57
FORTRAN, PASCAL,
NAMELT, DISPLAY,
MENDEF, REFDATA,
BLOCKDA, ADASUBS,
ADASUBB,
ADAPACKS,
ADAPACKB,
ADATASKS,
ADATASKB,
ADAGENS, ADAGENB,
ADAUNSPEC, OTHER
DIFFICULTY DEGREE OF DIFFICULTY | NUMBER 1TO5 P57, D55
IN CREATING PARTICU- (2,0)
LAR COMPONENT
SUB_DATE SUBMISSION DATE OF DATE P54, D2

100044371

4-6

Table 4-1. SEL Database Tables and Views (5 of 21)
Table or
View Name | Column Name Description Type Valid Code/ Vaiue Reference iD
COM_STAT TABLE CONTAINING
STATISTICS FOR ALL
COMPONENTS
COM_NO ID UNIQUELY IDENTIFY- | NUMBER
— ING EACH COMPONENT | (7, 0)
(FROM TABLE SUB_COM)
C_EXE_S NUMBER OF EXECUT- NUMBER P154
ABLE STATEMENTS IN (6,0)
COMPONENT
C_LINE NUMBER OF SOURCE NUMBER P155
LINES OF CODE (WITH | (6, 0)
COMMENTS) IN COM-
. PONENT
C_C_LINE NUMBER OF COMMENT | NUMBER P156
LINES IN COMPONENT | (8, 0)
(NO BLANK LINES)
C_ST™MT NUMBER OF STATE- NUMBER P221
MENTS IN THE COM- (6.0)
PONENT
FINAL_ORIGIN_ | ORIGIN CATEGORY AS- | CHAR (10) [NEW, EXTMO, SLMOD, | P222
CAT SIGNED TO THE COM- oLbuc
PONENT FOR COMPUT-
ING FINAL STATISTICS
DSF_ TABLE CONTAINING DSF
MEASURE MEASUREMENT DATA
D_ID D_ID FROM TABLE NUMBER
E— PROJ_DSF (10, 0)
STATUS_CODE | TYPE OF DSF DATA CHAR (10) | DESIGN, CODE,
SYSTEST, ACCTEST,
DISCREP,
QUESTIONS,
SPECMOD
MEASURE_ TYPE OF DSF MEASURE | CHAR (10) | MODDESIGN, P196, P198,
CODE MODCODE, P200, P204.
SYSTSTONE, pP208, P210.
SYSTSTPASS, p212
SYSTSTRUN,
ACCTSTONE,
ACCTSTPASS,
ACCTSTRUN,
DISCRES, QUESTANS,
SPECMODIMP
MEASURE _ VALUE OF DSF MEA- NUMBER P1g96, D181,
VALUE SURE (5, 0) P198, D183,
P200-P202.
D185-D18s6,
P204-P206,
D189-D190
P208, 0193,
P210, D195.
pP212, D197
100044371 4-7

Table 4-1. SEL Database Tables and Views (6 of 21)
Table or
View Name Column Name Description Type Valid Code/ Vaiue Reference iD
DSF_ TABLE CONTAINING DSF
TARGET TARGET DATA
D_ID D_ID VALUE FROM NUMBER
I TABLE PROJ_DSF (10, 0)
STATUS_CODE | TYPE OF DSF DATA CHAR (10) | DESIGN, CODE,
- SYSTEST, ACCTEST.
DISCREP,
QUESTIONS,
SPECMOD
TARGET_CODE | TYPE OF DSF TARGET CHAR (10) | TOTDESIGN, P195, P197,
- TOTCODE, P199, P203,
TOTSYSTST, P207, P209,
TOTACCTST, P211
TOTDISCREP,
QUESTSUB,
SPECMODREC
TARGET_VALUE | VALUE OF DSF TARGET | NUMBER P195, D180,
(5,0) P197, D182,
£199, D184,
P203, D188,
P207, D192,
P209, D194.
P211, D196
EFF_ACT TABLE CONTAINING
TECHNICAL AND DIRECT
MANAGEMENT ACTIVITY
HOURS FROM CLPRFs
OR PRFs AND SERVICE
PERSONNEL HOURS
FROM SPFs FOR ALL
PROJECT, PERSONNEL,
AND WEEK COMBINA-
TIONS
EFF_ID P_ID VALUE FROM NUMBER
TABLE EFF_PROJ OR {10, 0)
PS_ID VALUE FROM
TABLE EFF_SUB
ACTIVITY ACTIVITY TO WHICH CHAR (10) | ACCTEST, P25-P34,
- PERSONNEL ARE CLACCTEST, P39-P40,
CHARGING TIME ON CLCREDES, P42-P43,
CLPRF, PRF, OR SPF CLINDTEST, P157-P166
CLOTHER,
CLPREDES,
CLPRETEST,
CLRDREVCOD,
CLRESPSFR,
CLVEREVDES,
CLWRCODE, CREDES,
DEBUG, INTTEST.
OTHER, PREDES.
RDREVCOD.
RDREVDES,
SUPPORT,
TSTCODUN, WRCODE
100044370 4-3

Table 4-1.

SEL Database Tables and Views (7 of 21)

Table or
View Name

Column Name

Description

Type

Vaiid Code/ Value

Reference iD

EFF_ACT
(CONT'D)

ACT_HR

ACTUAL HOURS SPENT
IN PARTICULAR ACTIV-
ITY

NUMBER
(10,2)

P25-P34,
D23-D32,
P39-P40,
D44-D4s,
P42-P43,
D47-D48,
P157-P166,
D199-D208

EFF_FORM

TABLE CONTAINING
FORM IDENTIFICATION
AND STATUS INFORMA-
TION FOR EACH PRCJ-
ECT, PROGRAMMER AND
WEEK COMBINATION;
ENTERED FROM
CLPRFs, PRFs, OR SPFs

P_ID

P_ID VALUE FROM
TABLE EFF_PROJ

NUMBER
(10,0

FORM_NO

FORM NUMBER OF
CLPRF, PRF, OR SPF

CHAR (6)

D37, Dag,
D210

FORM_TYPE

TYPE OF DATA COLLEC-
TION FORM

CHAR (6)

CLPRF, PRF, SPF

STATUS

STATUS OF CLPRF, PRF,
OR SPF

CHAR (10)

UNCHK, HCCORRECT,
HCERROR, VERAP,
CLOSED

EFF_PROJ

TABLE ASSOCIATING
GIVEN PROJECT, PRO-
GRAMMER, AND WEEK
COMBINATION WITH
SURROGATE KEY (P_ID)
FOR USE IN OTHER
TABLES

PROJ_NO

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

NUMBER
3.0

SUB_DATE

SUBMISSION DATE OF
CLPRF, PRF, OR SPF

DATE

P23, D22

PROG_ID

ID UNIQUELY IDENTIFY-
ING EACH PROGRAM-
MER (FROM TABLE PER-
SONNEL)

NUMBER
(5.0)

SURROGATE KEY AS-
SIGNED TO REPRESENT
UNIQUE PROJ_NO,
PROG_ID, AND
SUB_DATE COMBINA-
TION

NUMBER
(10, 0)

100044371

4-9

Table 4-1.

SEL Database Tables and Views (8 of 21)

Table or
View Name

Column Name

Description

Type

Valid Code/ Value

Reference ID

EFF_SUB

TABLE ASSOCIATING
P_ID AND SUBSYSTEM
PREFIX WITH SURRO-
GATE KEY (PS_ID) FOR
USE IN OTHER TABLES

P_ID

P_ID VALUE FROM
TABLE EFF_PROJ

NUMBER
(10, 0)

SUB_PRE

SUBSYSTEM PREFIX
FROM TABLE PROJ_SUB

CHAR (5)

P47. D52,
D162

PS_ID

SURROGATE KEY AS-
SIGNED TO REPRESENT
UNIQUE P_ID AND
SUB_PRE COMBINATION

NUMBER
{10, 0)

MAINT_ACT_
HRS

TABLE CONTAINING
PROGRAMMER MAINTE-
NANCE HOURS FROM
WMEFs GROUPED BY
ACTIVITIES

MAINT_ID

MAINT_ID VALUE FROM
TABLE MAINT_PROJ

NUMBER
(10, 0)

MAINT_ACT

ACTIVITY TO WHICH
PROGRAMMER IS
CHARGING TIME ON
WMEF

CHAR (10)

ISOLATION,
REDESIGN,
IMPLEMENT,
UNSYSTEST,
ACCBENTEST, OTHER

P172-P177

ACT_HR

ACTUAL HOURS SPENT
IN PARTICULAR ACTIV-
ITY

NUMBER
(10.2)

P172-P177,
D155-D160

MAINT _
CHANGE

TABLE CONTAINING
INFORMATION FOR ALL
MAINTENANCE
CHANGES

MAINT CH_NO

FORM NUMBER OF
MCRF

CHAR (6)

D178

PROJ_NO

1D UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

NUMBER
3.9

PROG_ID

1D UNIQUELY IDENTIFY-
ING EACH PROGRAM-
MER (FROM TABLE PER-
SONNEL)

NUMBER
(5.0

SUB_DATE

SUBMISSION DATE OF
MCRF

DATE

Pes, D2

OSMR_NO

OSMR NUMBER

NUMBER
(4.0)

P178, D162

STATUS

STATUS OF MCRF

CHAR (10}

UNCHK, HCCORRECT.
HCERROR, VERAP,
CLOSED

100044371

4-10

Table 4-1. SEL Database Tables and Views (9 of 21)
Tabie or
View Name Column Name Description Type Valid Code/ Value Reference ID
MAINT_ FORM_TYPE TYPE OF DATA COLLEC- | CHAR (6) | MCRF
CHANGE TION FORM
(CONT'D)
MAINT_CH_ TYPE OF MODIFICATION { CHAR (10) | CORRECTION, P179, D163
TYPE ENHANCEMNT,
ADAPTATION
CH_CAUSE CAUSE OF CHANGE CHAR (10) | REQMTSPEC, P180, D164
DESIGN, CODE,
PRECH, OTHER
MAINT_ISO_CH | PROGRAMMER'S EF- CHAR (10) | 1HR, 1DAY, 1WEEK, P181, D165
FORT TO ISOLATE 1MONTH,
CHANGE 1MONTHMORE
MAINT_COM_ PROGRAMMER'S EF- CHAR (10) | 1HR, 1DAY, 1WEEK, P182, D166
CH FORT TO IMPLEMENT 1MONTH,
CHANGE 1MONTHMORE
CH_CLASS CLASS OF CHANGE CHAR (10) | INIT, LOGIC, INTERI, P184, D168
INTERE, DATAVAL,
COMPUTE, OTHER
EST_LOC_ADD |ESTIMATED NUMBER OF | NUMBER P185, D169
LINES OF CODE ADDED | (6, 0)
EST_LOC_CH ESTIMATED NUMBER OF | NUMBER P186, D170
LINES OF CODE (6,0)
CHANGED
EST_LOC_DEL |ESTIMATED NUMBER OF | NUMBER P187, D171
LINES OF CODE DE- (6, 0)
LETED
COMP_ADD NUMBER OF COM- NUMBER P188, D172
PONENTS ADDED (4, 0)
COMP_CH NUMBER OF COM- NUMBER P189, D173
PONENTS CHANGED (4,0)
COMP_DEL NUMBER OF COM- NUMBER P190, D174
PONENTS DELETED (4,0)
COMP_ADD_ NUMBER OF THE ADDED | NUMBER P191, D175
NEW COMPONENTS THAT (4, 0)
ARE TOTALLY NEW
COMP_ADD_ NUMBER OF THE ADDED | NUMBER P192, D176
REUSE COMPONENTS THAT 4,0)
ARE TOTALLY REUSED
(UNCHANGED)
COMP_ADD_ NUMBER OF THE ADDED | NUMBER P193, D177
REMOD COMPONENTS THAT {4,0)
ARE REUSED WITH
MODIFICATIONS
100044371 4-11

Table 4-1. SEL Database Tables and Views (10 of 21)

Table or
View Name

Column Name

Description

Type

Valld Code/ Vaiue

Reterence iD

MAINT_CH_
OBJECTS

TABLE CONTAINING
CHANGED OBJECTS
ASSOCIATED WITH PAR-
TICULAR MCRFs

MAINT_CH_NO

FORM NUMBER OF
MCRF FROM TABLE
MAINT_CHANGE

CHAR (6)

D178

CH_OBJECT

CHANGED OBJECT

CHAR (10)

REQMTDOC,
DESIGNDOC, CODE,
SYSDESC,
USERGUIDE, OTHER

P183, D167

MAINT_
CLASS_HRS

TABLE CONTAINING
PROGRAMMER MAINTE-
NANCE HOURS FROM
WMEFs GROUPED BY
CLASS OF MAINTE-
NANCE

MAINT _iD

MAINT_ID VALUE FROM
TABLE MAINT_PROJ

NUMBER
(10, 0

MAINT_CLASS

CLASS OF MAINTE-
NANCE TO WHICH PRO-
GRAMMER IS CHARGING
TIME ON WMEF

CHAR (10)

CORRECTION,
ENHANCEMNT,
ADAPTATION, OTHER

P168-P171

CLASS_HR

ACTUAL HOURS SPENT
IN PARTICULAR CLASS
OF MAINTENANCE

NUMBER
(10,2)

P168—P171,
D151-D154

MAINT _
PROJ

TABLE CONTAINING
WMEF DATA. A GIVEN
PROJECT, PROGRAM-
MER, AND WEEK ARE
ASSOCIATED WITH SUR-
ROGATE KEY (MAINT_ID)
FOR USE IN OTHER
TABLES

PROJ_NO

1D UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

NUMBER
(3.0)

SUB_DATE

SUBMISSION DATE OF
WMEF

DATE

P23, D22

PROG_ID

1D UNIQUELY IDENTIFY-
ING EACH PROGRAM-
MER (FROM TABLE PER-
SONNEL}

NUMBER
(5.0

P24, D21

MAINT_ID

SURROGATE KEY AS-
SIGNED TO REPRESENT
UNIQUE PROJ_NO,
SUB_DATE, AND
PROG_ID COMBINATION

NUMBER
(10, 0)

FORM_NO

FORM NUMBER OF
WMEF

CHAR (6)

D1s61

FORM_TYPE

TYPE OF DATA COLLEC-
TION FORM

CHAR (6)

WMEF

100044370

Table 4-1. SEL Database Tables and Views (11 of 21)

Table or
View Name | Column Name Description Type Valid Code/ Vaiue Reterence iD
MAINT_ STATUS STATUS OF WMEF CHAR (10) | UNCHK, HCCORRECT,
PROJ HCERROR, VERAP,
(CONT'D) CLOSED
PERSONNEL TABLE CONTAINING
INFORMATION ABOUT
PERSCNNEL FOR WHOM
DATA ARE RECORDED IN
THE DATABASE
PROG_ID 1D ASSIGNED FOR NUMBER
UNIQUELY IDENTIFYING |(5,0)
EACH PERSON SUBMIT-
TING FORMS
FORM_NAME ABBREVIATED NAME AS | CHAR (15) | THIS FIELD ALSO P24, M1, D21
IT APPEARS ON VARI- INCLUDES THE
OUS FORMS FOLLOWING
SERVICES
PERSONNEL NAMES:
LIBARIAN-LIBRARI-
ANS
OTHSUPP-OTHER
SUPPORT PERSON-
NEL
PROGMGMT-PRO-
GRAM MANAGEMENT
PERSONNEL
SECRTARY-
SECRETARIES
TECHPUBS-TECHNI-
CAL PUBLICATIONS
PERSONNEL
FULL_NAME FULL DESCRIPTIVE CHAR (30) M2
NAME OF PERSON
DATE_ENTRY DATE ON WHICH PER- DATE M3
SONNEL DATA WERE
ENTERED INTO DATA-
BASE
PROJECT TABLE CONTAINING
INFORMATION ABOUT
ALL PROJECTS IN THE
DATABASE
PROJ_NAME PROJECT NAME CHAR (8) P1, D1
PROJ_NO 1D ASSIGNED FOR NUMBER
UNIQUELY IDENTIFYING | (3. 0)
EACH PROJECT
PROJ_TYPE PROJECT CATEGORY CHAR (10) | AGSS, ATTITUDE, P2, D163
DATABASE,
GRAPH/UI. MP&A,
ORBIT, OTHER
REALTIME,
SIMULATOR, TOOL
100044371 4-13

Table 4-1. SEL Database Tables and Views (12 of 21)

Table or
View Name

Column Name

Description

Type

Valid Code/ Value

Reference D

PROJECT
(CONT'D)

ACTIVE_
STATUS

CURRENT STATUS OF
PROJECT

CHAR (10)

ACT_DEV,
ACT_MAINT,
INACTIVE, DISCONT

P3

PROJ_CPU_
STAT

TABLE CONTAINING
AT-COMPLETION COM-
PUTER RESOURCE STA-
TISTICS FOR ALL PROJ-
ECTS IN DATABASE

PROJ_NO

1D UNIQUELY IDENTIFY-
ING EACH PROJECT
{FROM TABLE PROJECT)

NUMBER
3.9

SUB_DATE

SUBMISSION DATE OF
PCSF

DATE

P124, D2

CPU_NAME

SHORT NAME IDENTIFY-
ING COMPUTER USED
ON PROJECT (FROM
TABLE COMPUTER)

CHAR (10)

P134, M4,
Das

TOTAL_HRS

TOTAL COMPUTER
HOURS USED ON PAR-
TICULAR COMPUTER

‘FOR PROJECT

NUMBER
(10, 2)

P135, D94

T_RUN

TOTAL NUMBER OF
RUNS ON PARTICULAR
COMPUTER FOR PROJ-
ECT

NUMBER
(6,0)

P136, D95

PROJ_DSF

TABLE CONTAINING
FORM IDENTIFICATION
AND STATUS INFORMA-
TION FOR EACH PROJ-
ECT, PROGRAMMER,
AND WEEK COMBINA-
TION; ENTERED FROM
DSFs

PROJ_NO

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

NUMBER
(3.0)

SUB_DATE

SUBMISSION DATE OF
DSF

DATE

P23, D22

PROG_ID

1D UNIQUELY IDENTIFY-
ING EACH PROGRAM-
MER (FROM TABLE PER-
SONNEL)

NUMBER
(5.0

FORM_NO

FORM NUMBER OF DSF

CHAR (6)

D198

STATUS

STATUS OF DSF

CHAR (10)

UNCHK, HCCORRECT,
HCERROR, VERAP,
CLOSED

FORM_TYPE

TYPE OF DATA COLLEC-
TION FORM

CHAR (8)

DSF

100044371

4-14

Table 4-1. SEL Database Tables and Views (13 of 21)
Tabie or
View Name | Column Name Description Type Valid Code/ Vaiue Reference ID
PROJ_DSF {D_ID SURROGATE KEY AS- NUMBER
(CONT'D) SIGNED TO REPRESENT | (10,0)
UNIQUE PROJ_NO,
SUB_DATE COMBINA-
TION
PROJ_EST TABLE CONTAINING
ESTIMATED STATISTICS
FOR ALL PROJECTS IN
DATABASE
PROJ_NO ID UNIQUELY IDENTIFY- | NUMBER
- ING EACH PROJECT (3,0)
(FROM TABLE PROJECT)
SUB_DATE SUBMISSION DATE OF | DATE P13, D2
- PEF
T_SYS ESTIMATED TOTAL NUM- | NUMBER P14, D14
BER OF SUBSYSTEMS {4, 0)
T_COM ESTIMATED TOTAL NUM- | NUMBER P15 D15
BER OF COMPONENTS | (4, 0)
T_LINE ESTIMATED TOTAL SLOC | NUMBER P16,D16
7.0
T_NEW_LINE ESTIMATED TOTAL SLOC | NUMBER P19, D17
FOR ALL NEW COM- (7.0)
PONENTS
T_MOD_LINE ESTIMATED TOTAL SLOC | NUMBER P18,D18
FOR ALL MODIFIED COM- { (7, 0)
PONENTS
T_OLD_LINE ESTIMATED TOTAL SLOC | NUMBER P17,019
FOR ALL REUSED COM- | (7,0)
PONENTS
PRO_HR ESTIMATED TOTAL PRO- | NUMBER P20, D11
GRAMMER HOURS (10,2)
MAN_HR ESTIMATED TOTAL MAN- | NUMBER P21, 012
- AGEMENT HOURS (10, 2)
SER_HR ESTIMATED TOTAL SER- | NUMBER P22,D13
VICES HOURS {10, 2)
PROJ_EST__ TABLE CONTAINING
PHASE ESTIMATED AND AT-
COMPLETION PHASE
DATES FOR ALL PROJ-
ECTS IN DATABASE
PROJ_NO 1D UNIQUELY IDENTIFY- | NUMBER
T ING EACH PROJECT (3,0
{FROM TABLE PROJECT)
SUB_DATE SUBMISSION DATE OF DATE PS, P13,
PCSF OR PEF P124, D2
PHASE_CO PHASE CODE IDENTIFY- | CHAR (10) | REQNT, DESGN, Pe—P21,
ING DIFFERENT PHASES CODET, SYSTE, P125-P131
IN LIFE OF PROJECT ACCTE, CLEAN,
MAINT
100044371 4-15

Table 4-1. SEL Database Tables and Views (14 of 21)

Table or
View Name

Column Name

Deacription

Type

Valid Code/ Vaiue

Reference ID

PROJ_EST_
PHASE
(CONT'D)

START_DATE

START DATE OF A PAR-
TICULAR PHASE

DATE

Pe-P11,
D3-Ds,
P125-P131,
D84-D90

END_DATE

END DATE OF A PARTIC-
ULAR PHASE

DATE

P6-P11,
D4-Ds, D10,
P125-P131,
D85-D91

PROJ_FORM

TABLE CONTAINING
FORM IDENTIFICATION
AND STATUS INFORMA-
TION FOR PCSF, PEF,
SEF, AND SPF DATA

PROJ_NO

1D UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

NUMBER
3,0

SUB_DATE

SUBMISSION DATE OF
PCSF, PEF, SEF, OR SPF

DATE

P13, P124,
D2, P23, D22

FORM_NO

FORM NUMBER OF
PCSF, PEF, SEF, OR SPF

CHAR (6)

D150, D20,
D49, D113

FORM_TYPE

TYPE OF DATA COLLEC-
TION FORM

CHAR (6)

PCSF, PEF, SEF, SPF

STATUS

STATUS OF PCSF, PEF,
SEF, OR SPF

CHAR (10)

UNCHK, HCCORRECT,
HCERROR, VERAP,
CLOSED

PROJ_GRH

TABLE CONTAINING
GROWTH HISTORY IN-
FORMATION FOR ALL
PROJECTS IN DATABASE

PROJ_NO

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

NUMBER
(3.0

SUB_DATE

SUBMISSION DATE OF
SPF

DATE

P23, D22

GR_LINE

TOTAL NUMBER OF
LINES OF CODE (WITH
COMMENTS) IN PROJ-
ECT CONTROLLED
SOURCE LIBRARY

NUMBER
7.9

P80, D43

GR_MOD

TOTAL NUMBER OF
MODULES IN PROJECT
CONTROLLED LIBRARY

NUMBER
4,0

P61, D41

GR_CH

TOTAL NUMBER OF
CHANGES RECORDED
IN PROJECT CON-
TROLLED LIBRARY

NUMBER
(6.0)

P62, D42

PROJ_
MESSAGES

TABLE CONTAINING
GENERAL PROJECT
DESCRIPTION INFORMA-
TION FOR ALL PROJ-
ECTS IN DATABASE

100044371

4-16

Table 4-1.

SEL Database Tables and Views (15 of 21)

Table or
View Name

Column Name

Description

Type

Valid Code/ Vaiue

Reference ID

PROJ_
MESSAGES
(CONT'D)

S_ID

—_—

S_ID FROM TABLE
PROJ_NOTES

NUMBER
(5,0

LINE_NO

LINE SEQUENCE NUM-
BER WITHIN A MESSAGE

NUMBER
3.9

MESSAGES

GENERAL PROJECT
DESCRIPTION INFORMA-
TION

CHAR (65)

P4, D62

SUB_DATE

DATE ON WHICH MES-
SAGE WAS SUBMITTED

DATE

D2

PROJ_
NOTES

TABLE ASSOCIATING
GIVEN PROJECT AND
MESSAGE TYPE WITH
SURROGATE KEY (S_ID)
FOR USE IN THE
PROJ_MESSAGES TABLE

PROJ_NO

1D UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

NUMBER
3.0

NOTE_TYPE

GENERAL PROJECT
DESCRIPTION CODES

CHAR (10)

CLOSEQUT,
COMPACCTS,
COMPSYS,
CONTACTS,
CONTRLLIB,
DATAAVAIL,
FORMSCOL,
GENMESS, GHTOOL,
LANGUAGES,
PROJNAME, TASKNO

P4, D61

SURROGATE KEY AS-
SIGNED TO REPRESENT
UNIQUE PROJ_NO AND
NOTE_TYPE COMBINA-
TION

NUMBER
(5.9)

PROJ_PROD

TABLE CONTAINING
WEEKLY COMPUTER
RESOURCE USE IN-
FORMATION FOR ALL
PROJECTS IN DATABASE

PROJ_NO

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

NUMBER
(3.09)

SUB_DATE

SUBMISSION DATE OF
SPF

DATE

P23, D22

RES_NAME

SHORT NAME IDENTIFY-
ING COMPUTER USED
ON A PROJECT (FROM
TABLE COMPUTER)

CHAR (10)

P44, M4, D38

RES_HR

TOTAL CPU HOURS
USED IN CURRENT
WEEK

NUMBER
(10.2)

P45, D39

100044371

4-17

Table 4-1. SEL Database Tables and Views (16 of 21)

Table or
View Name | Column Name Description Type Valid Code/ Vaiue Reference ID
PROJ_PROD | RES_RUN TOTAL RUNS MADE IN NUMBER P46, D40
(CONT'D) CURRENT WEEK (5.0)
PROJ_SEF TABLE CONTAINING
SUBJECTIVE MEASURES
FROM SEFs FOR ALL
PROJECTS IN DATABASE
PROJ_NO ID UNIQUELY IDENTIFY- | NUMBER
ING EACH PROJECT (3. 0)
(FROM PROJECT TABLE)
MEAS_TYPE CODES IDENTIFYING CHAR (10) | PMO1, PM02, PMO03,
SUBJECTIVE PROJECT PMO04, PMO5, PM0S6,
CHARACTERISTICS ST07, ST08, STO9,
ST10, TM11, TM12,
TM13, TM14, TM15,
PC1s, PC17, PC18,
PC19, PC20, PC22,
PC23, PC24, EN2S,
EN26, EN27, EN28,
EN29, EN30, PT31,
PT32, PT33, PT34,
PT35, PT36
EVALUATE INTEGER INDICATING NUMBER |1T70OS P88-P107,
THE VALUE OF A PAR- (1. 0) D114-D133,
TICULAR MEAS_TYPE P109-P123,
D135-D149
PROJ_SEF_ TABLE CONTAINING
SEC SECONDARY-LEVEL
INFO, AS RECORDED ON
SEFs, FOR ALL PROJ-
ECTS IN DATABASE
PROJ_NO ID UNIQUELY IDENTIFY- | NUMBER
ING EACH PROJECT (3.0
(FROM TABLE PROJECT)
MEAS_TYPE CODE IDENTIFYING CHAR (10) | PC21
PROJECT CHARACTER-
ISTICS AND TOOLS
USED
SECOND_L SECONDARY LEVEL CHAR (10) | COMPL, LINK, EDIT, P108, D134
INFORMATION FOR A GRADIS, REPLP,
PARTICULAR STRANT, PDLPR, ISPF,
MEAS_TYPE; AT PRES- SAP, CAT, PANVAL,
ENT, ALL THE CODES TESTCO, INTERF, LSE,
STORED HERE ARE FOR SYMDEB, CMTOOL,
“USE OF TOOLS" (PC21) SDE, OTHER
PROJ_STAT TABLE CONTAINING
AT-COMPLETION STA-
TISTICS FOR ALL PRCU-
ECTS IN DATABASE
PROJ_NO 1D UNIQUELY IDENTIFY- | NUMBER
- ING EACH PROJECT (3,0)
(FROM TABLE PROJECT)
SUB_DATE SUBMISSION DATE OF DATE P124, D2
PCSF
10004437L 4-18

Table 4-1. SEL Database Tables and Views (17 of 21)

Table or
View Name | Column Name Description Type Valld Code/ Value Reference ID
PROJ_STAT |[TECH_MAN_HR |TOTAL TECHNICAL AND | NUMBER P132, D92
{CONT'D) MANAGEMENT HOURS (10, 2)

USED ON PROJECT

SER_HR TOTAL SERVICE HOURS | NUMBER P133, D93
EXPENDED ON PROJ- (10, 2) :
ECT

T_SYS TOTAL NUMBER OF SUB- | NUMBER P137, D96
SYSTEMS (4,0)

T_COM TOTAL NUMBER OF NUMBER P138, D97
COMPONENTS (,0)

T_CH TOTAL NUMBER OF NUMBER P139, D98
CHANGES (6,0)

T_DOC TOTAL PAGES OF DOC- NUMBER P140, D99
UMENTATION (6, 0)

T_LINE TOTAL SLOC FOR ALL NUMBER P141, D100
COMPONENTS (IN- (7. 0)
CLUDES BLANK LINES)

T_NEW_LINE TOTAL SLOC FCR ALL NUMBER P142, D101
NEW COMPONENTS (6, 0)

T_MOD_LINE TOTAL SLOC FOR ALL NUMBER P143, D102
SLIGHTLY MODIFIED (6. 0)
COMPONENTS

T_OLD_LINE TOTAL SLOC FOR ALL NUMBER P144, D103
REUSED (UNCHANGED) | (6, 0)
COMPONENTS

T_COMMENT TOTAL NUMBER OF NUMBER P145, D104
COMMENT LINES (BLANK | (6, 0)
LINES NOT INCLUDED)

T_EXE_MOD TOTAL NUMBER OF NUMBER P146, D105
EXECUTABLE COM- (4, 0)
PONENTS

T_NEW_MOD TOTAL NUMBER OF NEW | NUMBER P147,0D106
EXECUTABLE COM- (4, 0)
PONENTS

T_MOD_MOD TOTAL NUMBER OF NUMBER P148, D107
SLIGHTLY MODIFIED (4, 0)
EXECUTABLE COM-
PONENTS

T_OLD_MOD TOTAL NUMBER OF RE- | NUMBER P149, 0108
USED (UNCHANGED) (4.0)
EXECUTABLE COM-
PONENTS

T_EXE_STAT TOTAL NUMBER OF NUMBER P150, D109
EXECUTABLE STATE- (6, 0)
MENTS FOR ALL FOR-
TRAN COCMPONENTS

100044371 4-19

Table 4-1. SEL Database Tables and Views (18 of 21)

Table or
View Name

Column Name

Description

Type

Valid Code/ Value

Reference ID

PROJ_STAT
(CONTD)

T_NEW_STAT

TOTAL NUMBER OF
EXECUTABLE STATE-
MENTS FOR ALL NEW
FORTRAN COM-
PONENTS

NUMBER
(6,0

P151, D110

T_MOD_STAT

TOTAL NUMBER OF
EXECUTABLE STATE-
MENTS FOR ALL SLIGHT-
LY MODIFIED FORTRAN
COMPONENTS

NUMBER
(6.0)

P152, D111

T_OLD_STAT

TOTAL NUMBER OF
EXECUTABLE STATE-
MENTS FOR ALL RE-
USED (UNCHANGED)
FORTRAN COM-
PONENTS

NUMBER
(6. 0)

P153, D112

T_STMTS

TOTAL NUMBER OF
STATEMENTS

NUMBER
(6,0)

P216,D214

T_NEW_STMTS

TOTAL NUMBER OF
STATEMENTS FOR ALL
NEW COMPONENTS

NUMBER
(6.0)

P217, D215

T_MOD_STMTS

TOTAL NUMBER OF
STATEMENTS FOR ALL
SLIGHTLY MODIFIED
COMPONENTS

NUMBER
(6.9)

P218, D216

T_OLD_STMTS

TOTAL NUMBER OF
STATEMENTS FOR ALL
REUSED (UNCHANGED)
COMPONENTS

NUMBER
(6.0)

P220, D218

T_EXTMO_LINE

TOTAL SLOC FOR ALL
EXTENSIVELY MODIFIED
COMPONENTS

NUMBER
(6,0)

P213, D211

T_EXTMO_MOD

TOTAL NUMBER OF EX-
TENSIVELY MODIFIED
EXECUTABLE COM-
PONENTS

NUMBER
(4.0)

P214, D212

T_EXTMO_STAT

TOTAL NUMBER OF
EXECUTABLE STATE-
MENTS FOR ALL EXTEN-
SIVELY MODIFIED FOR-
TRAN COMPONENTS

NUMBER
(6.0)

pP215, D213

T_EXTMO_
STMTS

TOTAL NUMBER OF
STATEMENTS FOR ALL
EXTENSIVELY MODIFIED
COMPONENTS

NUMBER
(6.0)

P219, D217

PROJ_SUB

TABLE ASSOCIATING
PROJECT AND SUBSYS-
TEM WITH SURROGATE
KEY (SUBSY_ID) THAT
UNIQUELY IDENTIFIES
THE SUBSYSTEM FOR
USE IN OTHER TABLES

1000443701

Table 4-1.

SEL Database Tables and Views (19 of 21)

Table or
View Name

Column Name

Description

Type

Valid Code/ Vaiue

Reference ID

PROJ_SUB
(CONT'D)

PROJ_NO

ID UNIQUELY IDENTIFY-
ING EACH PROJECT
(FROM TABLE PROJECT)

NUMBER
(3.9

SUB_PRE

SUBSYSTEM PREFIX

CHAR (5)

P47, P84,
Dso

SUB_DATE

DATE SUBSYSTEM WAS
SUBMITTED

DATE

P50, P2

SUBSY_ID

SURROGATE KEY AS-
SIGNED TO REPRESENT
UNIQUE PROJ_NO AND
SUB_PRE COMBINATION

NUMBER
(5.0)

SPECIAL_
ACT

TABLE CONTAINING
PROGRAMMER ACTIVITY
HOURS FROM CLPRFs
OR PRFs (PART C) FOR
ALL PROJECT, PRO-
GRAMMER, AND WEEK
COMBINATIONS

EFF_ID

P_ID VALUE FROM
TABLE EFF_PROJ OR
PS_ID VALUE FROM
TABLE EFF_SUB

NUMBER
(10, 0)

SP_ACTIVITY

SPECIAL ACTIVITY TO
WHICH PROGRAMMER
IS CHARGING TIME ON
CLPRF OR PRF

CHAR (10)

CLMETHOD,
DOCUMENT,
ENHANCE, REUSE,
REWORK

P35-P38,
P167

ACT_HR

ACTUAL HOURS SPENT
IN A PARTICULAR ACTIV-
ITY

NUMBER
(10,2

P35-P38,
D33-D3s,
P167, D209

SUBSYSTEM

TABLE CONTAINING
INFORMATION FOR PAR-
TICULAR SUBSYSTEMS,
AS RECORDED ON SiFs

SUBSY_ID

ID UNIQUELY IDENTIFY-
ING EACH SUBSYSTEM
(FROM TABLE
PROJ_SUB)

NUMBER
(5.9)

NAME

SUBSYSTEM DE-
SCRIPTIVE NAME

CHAR (40)

P48, DS1

FUNCTION

SPECIFIC FUNCTION
THE SUBSYSTEM PER-
FORMS

CHAR (10)

USERINT, DPDC,
REALTIME, GRAPH,
CPEXEC, SYSSERYV,
MATHCOMP

P49, D52

SUB_COM

TABLE ASSOCIATING
SUBSYSTEM AND COM-
PONENT NAME WITH
SURROGATE KEY THAT
UNIQUELY IDENTIFIES
THE COMPONENT FOR
USE IN OTHER TABLES

10004437L

4-21

Table 4-1. SEL Database Tables and Views (20 of 21)

Table or
View Name

Column Name

Description

Type

Vaild Code/ Value

Reference ID

SUB_COM
(CONT'D)

SUBSY_ID

ID UNIQUELY IDENTIFY-
ING EACH SUBSYSTEM
(FROM TABLE
PROJ_SUB)

NUMBER
(5.0

COM_NAME

COMPONENT DE-
SCRIPTIVE NAME

CHAR (40)

P51, P84,
Ds3

COM_NO

SURROGATE KEY AS-
SIGNED TO REPRESENT
UNIQUE SUBSY_ID AND
COM_NAME COMBINA-
TION

NUMBER
(7.0

COM_DATE

DATE ON WHICH COM-
PONENT IS ENTERED
INTO DATABASE

DATE

P52, D2

VALIDATION

TABLE THAT IDENTIFIES
VALID CODES USED IN
VARIOUS FIELDS IN DA-
TABASE AND PROVIDES
DESCRIPTIONS FOR
THEM

F_NAME

FIELD NAME FOR WHICH
CODE IS VALID

CHAR (20)

SEE APPENDIX A FOR
A DESCRIPTION OF
ALL CODES AND
VALUES

CODE

ABBREVIATED CODE

CHAR (10)

VALUE

FULL DESCRIPTION OF
CODE

CHAR (75)

V_ CLEAN-
ROOM ACT

VIEW CONTAINING PER-
SONNEL ACTIVITY
HOURS FROM CLPRFs
(FROM TABLE EFF_ACT)
THAT ARE CONVERTED
INTO PRF ACTIVITY
HOURS

EFF_D

SAME AS EFF_ID IN
EFF_ACT

NUMBER
(19)

ACTIVITY

SAME AS ACTIVITY IN
EFF_ACT

CHAR (8)

ACT_HR

SAME AS ACT_HR IN
EFF_ACT

NUMBER

V_ CLEAN-
ROOM_
PROJECTS

VIEW THAT JOINS THE
PROJECT, PROJ_NOTES,
AND PROJ_MESSAGES
TABLES

PROJ_NAME

SAME AS PROJ_NAME IN
PROJECT

CHAR (8)

10004437L

Table 4-1. SEL Database Tables and Views (21 of 21)

Table or
View Name

Column Name

Description

Type

Valid Code/ Value

Reference ID

V_PROJ_
COM

VIEW THAT JOINS THE
PROJECT, PROJ_SUB,
AND SUB_COM TABLES

PROJ_NAME

SAME AS PROJ_NAME IN
PROJECT

CHAR (8)

SUB_PRE

SAME AS SUB_PRE IN
PROJ_SUB

CHAR (5)

COM_NAME

SAME AS COM_NAME IN
SUB_COM

CHAR (40)

COM_NO

SAME AS COM_NO IN
SUB_COM

NUMBER
(7.0

V_PROJ_
SUB_ACT

VIEW THAT JOINS THE
PROJECT, EFF_PROJ,
EFF_SUB, AND EFF_ACT
TABLES

PROJ_NAME

SAME AS PROJ_NAME IN
PROJECT '

CHAR (8)

SUB_PRE

SAME AS SUB_PRE IN
EFF_SUB

CHAR (5)

ACTIVITY

SAME AS ACTIVITY IN
EFF_ACT

CHAR (10)

ACT_HR

SAME AS ACT_HR IN
EFF_ACT

NUMBER
(10, 2)

V_
SUBSYSTEM
_INFO

VIEW THAT JOINS THE
PROJECT, PROJ_SUB,
AND SUBSYSTEM
TABLES

SUB_PRE

SAME AS SUB_PRE IN
PROJ_SUB

CHAR (5)

NAME

SAME AS NAME IN SuB-
SYSTEM

CHAR (40)

FUNCTION

SAME AS FUNCTION IN
SUBSYSTEM

CHAR (10)

SUB_DATE

SAME AS SUB_DATE IN
PROJECT

DATE

PROJ_NAME

SAME AS PROJ_NAME IN
PROJECT

CHAR (8)

10004437L

4-23

X3ANI INDINN = X3ANI Ng

TINN LON = 11NN "Nz
AN AUVYINIHd = Md,

X3aNI| TINN'N ol HYHO SN1VLS

TINN N 9 HYHO IdAL WHOAS

X3ANI TINN o] HVYHO 3dAL HO

TINN 0 ‘2 | U3AWNN X3 WOO WNN

TINN 0'c | HIEWNN HO WOO WNN

TINN 6 alva dWO9 31va

TINN 6 alva Y3130 31iva

TINN ! HVHO H3IHLO 443

TINN ! HVYHD VdHvd 443

TINN ol HVYHD HO WOO 443

TINN ot HVHO HO OSI 443

TINN ! HVHO vav 443

TINN ! HVYHO 3aNO 443

X3aNI | TINN'N- 6 31va 3lva ans

X3aNI| TINN'N 0'G | H3GNNN Qi ®ouHd
X3ONI'N| TINN'N| Md 9 HYHO ON 3ONVHO IONVYHO

S$S300V SSV10 Y3SN TINN'N 01 HYHO IdAL SS3D0V
SSV10 Hasn TINN N Md oC HYHO ai "3asn vHo AZIYOHLNY
eweN ejqe) BujApepun | cpoxspu) ZSIINN Loy | wipim edAL aweN uwnjo) SWRBN MIJA 10 9|qeL

(o€ Jo 1) suopeoyjoeds esjuyse)—sme|A pue se|qel eseqejeq 13S "Z-b OlqeL

sal|qel XVA

4-24

1000044371

X3AN!I FNDINN = X3ANI 'Ng
TINN LON = 11NN "Nz
AT AHVWIHC = Md,

X3aNi ‘N TINN'N] HVYHO S100L Y43
X3aANI'N| TINN'N Md 9 HVHO ON 3ONVYHO S71001 Y43 HO
X3ANI TINN 01 HVHO ISNVYOV YH3
TINN i HVYHO 00dv Hy3
TINN I HVYHO SINO Y43
TINN ! HVYHO OdAl Y43
TINN b HVYHO SINOQ Yy3
TINN (1] HVYHO SSV10 4d3
TINN (]| HVYHO 3DHNOS YH3
X3aNI'n| TINN'N d 9 HVYHO ON 3DNVHO NID HHI HO
X3aNi'n|{ TINN'N 0l HVHO S3HV Hu3
X3AaNI'Nn| TINN'N Ad 9 HVYHO ON JONVHO S3HVY HHI HO
X3aNI'n| TINN'N 01 HVHO JYN1v3d vav
X3aANI ‘N[TINN'N d 9 HVHD ON IONVHO 1v34vav HO
X3aNI
X3ANI'N| TINN'N Md 0‘Z | Y3GWNN ON W02
X3ANi'N{ TINN'N Md 9 HYHO ON 3ONVHO WOO FONVYHD
awepN ajqe)l BuiApapun gpaxapu| ZSINN Aoyt | yipim adAL aweN uwN|o) SuIeN MajA 10 9jqeL
sa|qel XVA

(0g 10 2) suopeayjoads [eajuydaL—SMaIA pue sa|qel aseqeleq 73S "Z-b diqel

4-25

1000044371

X3aANI INDINN = X3ANI 'Ng

TINN LON = 71NN "Nz
AIX AHVWIHC = Md,

TINN I HVYHO vav 443
TINN o] HVYHO 3dAL HO
TINN 6 31va dWO9 31va
TINN 6 31va H¥313Q 31va
TINN'N Md 9 HVHO ON 39NVHO 442 35010
B 3lvis
TINN oL HVYHD NIDIHO VNI
TINN o¥ HVYHO INVN WOD
TINN S HVYHO 3yd ans
B __ _Nioi™o
TINN| Md 0L | H3ANWNN ON WOD ON W09 38010
TINN 0'Z | H3GNNN ON WOD
TINN o] "HVHO 3S0d4nd
TINN 0l HVHO SNIVLS
TINN 6 a1va 3iva ans
TINN 0'Z | Y3annN ALINDI44ia
TINN 01 HYHO 3dAL WOO
TINN (] HVHO 3dAL 1HO
TINN ‘N Md 9 HVYHO ON WHO4 400 3S010
aweN ajqey BujAyepun | pexapu) ZSINN Aoyt | wipim adAL awleN vwiNioH awieN MIJA 10 e|qe].

(o€ 10 €) suopeoyioeds |eajuyoel—SMaIA pue se|qe) eseqejeq J3S ‘Z-b 8|qelL

solqel XvA

4-26

1000044371

X3ANI INDINN = X3ANI Mg
TINN LON = TINN ‘Nz
A AHVNIHCD = Md,

TINN N 02 HVHO ANYN 1INd O

X3aNI'N| TINN'N| d ot HVHO INVN NdD HILNAWOD
TINN o1 HVHO S1001
TINN oL HVHO S3yv
TINN o1 HYHO asnvov
TINN ! HYHO 20Qav
TINN 1 YVHO OdAL
TINN b HVHO SINOD
TINN ! HVYHO SINO
TINN o]} HVHO SSY10
TINN o] HVHO 30HNOS

TINN'N d 9 HVHO ON 3I9DNVHO yy3 440 3ISO10
TINN 0°2 | uzannN HO WOQ WNN
TINN ol HVYHO HO WOQ 443
TINN 0l HVYHO HO OSI 443
TINN 6 31va 31va ans
TINN]} HYVHO SNIVLS

TINN 0l HVYHO 3YNIv34 vayv | (a.LNOD) 440 3S010

sweN 9jqel Bullpapun gpaxapuj zSIINN Aoxt | wipIm odAL awIeN uwnjo) SWIBN MI|A 10 a|qeL

sa|qej XvA

(o€ 10 t) suoneoyioads |edjuyIa]—SMIIA pue sajqel aseqeleq T3S 2-b dldelL

4-27

1000044370

X3ANI 3NOINN = X3ANI 'Ng

TINN LON = TINN ‘Nz

AIX AHVWIHC = Md,

TINN ot HYHO | 1vO NIDIHO VNI
TINN 09 | H3aWNN 1N1S O
TINN 09 | HaaWNN ANIT O O
TINN 0 ‘9 | H3anNN aNn 0
TINN 0'9 | HIaWNN S 3ax3a 0
XIANI'N| TINN'N| Md| 0'Z| H3awnN ON WOD V1S WOO
X3ANI TINN 6 31va 3iva ans
TINN 0 ‘2 | H3AWNN ALINOI441Q
TINN ol HYHO IdAL WOD
TINN ot HVHO 3dAL 1HO
X3ANI TINN 6 alva 31va 31v340
X3ANI | TINN'N ot HYHO SNIVLS
TINN ‘N 9 HVHO 3dAL WHOL
X3ANI'N| TINN'N 9 HVYHO ON WHO4
TINN 0'S | H3IFGNNN 4l o04d
X3ANI'N| TINN'N Md 0 ‘L] HIGWNN ON W02 IDOHNOS WO
X3aNI'N| TINN'N] HVYHO 3S0dHNd
XIANI'N] TINN'N| Md| 0°'Z] y3annN ON W02 3S0dHNd WOD
aweN ojqel BujApepun | cpaxspuj zSIIPN Loxt | vipim odAL aweN uwnjo) BWIBN Ma|A 10 3|qe]

s9]qeL XVA

(o€ J0 g) suopeoyoeds |eajuydel—sme|A pue se|qel eseqejeq T3S "Z-b olqel

4-28

1000044370

X3ANI 3NDINAN = X3ANI 'Ng

71NN LON = TINN "Nz
AT AHVWIHC = Md,

TINN N 201 | HIGWNN HH LoV

X3aNI'n| TINN'N Md] HVYHO ALIAILLODV
X3aNI'N| TINN'N Md| 001 | HIBWNN al 443 10V 443
TINN § HVYHO N3AAQIH ANWNG

TINN'N G | HIGWNN ANTVA 139YYL

X3AaNI'n| TINN'N Md (0] HVHO 3000 1394Vl

X3aNI'n| TINN'N Md ol HVHO 30090 SNivls
XIANI'N| TINN'N Md | 0°0l [438WNN aa 1394vL 4sq

TINN'N S | HIGWNN ANTVA HNSYIN

X3AaNI'N| TINN'N Md 01 HVHO 3000 34NSVIN

X3aNI'N|{ TINN'N Md 0l HVYHO 3000 SNLVLS
X3IANI ‘N TINN'N Md| 0°0L | H3GWNN aa IHNSYaIW 4Sd

TINN'N L | H3aWNN ON W02

X3aNi'n| TINN'N Md ov HVYHO IWVYN WOD

X3aanNi'n} TINN'N Md S HVHO 3Iyd 9ns
3 3 3 W09
X3AaNI'N|{ TINN'N Nd Y3ganWNN ary3asn | IONVHO dW3L J4DO
awepN oiqel Bullpgepun gPaxapu| ZSIINN Aoxt | wipim odAL SWeN uwnjo) eIBN M)A 10 3|qeL

sajqeL XvA

(0€ 10 9) suoneayveds |edjUYO8]—SMEIA Pue So|qel eseqeleq T3S “Z-v elqel

4-29

100004437L

3SN IHNLNS YO AIANIVLIY 319V ALJWI,
X3ANI 3NDINN = X3ANI Ng

TINN LON = TINN ‘Nz
AN AHVYWIHC = Xd,

TINN N 2 ‘0l | H3IGWNN HH LoV
X3ONI'N| TINN'N| Md ol HVHO LOV INIVWN
X3aNI'N| TINN'N Xd| 0°01 [Y3GWNN ar ANIvN SHH 1OV INIVW
X3ANI'N| TINN'N| Md oy HYHO INVN 318vL
X3ANI'N{ TINN'N d 02 HYHO H3ISN VHO yAWVN 319VL dII
X3IaNI'N| TINN'N Md 6 3iva Ava LvS
X3ANI'N| TINN'N Nd| 00l | Y3aWNN ON LdIHOS | AVQ 1VS 31vHINID
X3aNi'n| TINN'N 00l | H3AWNN al sd
X3ONI'N| TINN'N| Xd S HVHO 3JHd NS
X3ANI'N| TINN'N Md| 001 | Y3gWNN ard ans 443
X3aNI'N| TINN'N 0 ‘0l | H39WNN ard
X3aNI'N| TINN'N| Md| 0°'S|y3annN al ©0Hd
X3ANI'N| TINN'N| Md 6 31va 31va ans
XIANI'0] TINN'N| Md| 0°‘c| y3gannN ON rOHd rodd 443
X3IAGNI| TINN'N (]t HVYHO SNIVLS
TINN'N 9 HVYHO 3dA1l WHOA
X3AANI | TINN'N 9 HYHO ON WHO4
X3ANI] TINN'N] Md] 0°0t | H3awnN alrd WHO4 J443
eweN ojqey BuiApepun | pexapui zSIINN Loyt | wipm adA) aWeN uwnjo) SWIBN MI|A 10 9jqe]
s9jqeL XVA

(0€ 10 £) suoneoyoeds [eojuyoe)—smalp pue sejqe) eseqeleq 13S Z-b o|qelL

4-30

100004437L

XAANI INDINN = X3ANI Mg
TINN LON = 110N ‘Nz
AINA AHVYNIYC = Md,

TINN 0'v | H3EWNN 130 dWOD

TINN 0'v | H3GWNN HO dNOD

TINN 0'v | YH3BNNN aav dwoo

TINN 0'9 | HIGWNN 1330 207 183

TINN 0'9 | HIAWNN HO 007 1S3

TINN 0 ‘9 | H3GWNN aav 207 1s3

TINN N ol HVYHO SSY10 HO

TINN N (] HVHO HO WOO LINIVW

TION N 01 HYHO HO OSI LNIVN

TINN N o]} HVHO 3ISNVO HO

TINN N]! HVHO IdAL HO INIVI

TINN N 9 dvHO 3dAL WHOAL

TINN N ot HVHO SN1VLS

TINN N 0 ‘v | Y3GWNN ON HWSO

TINN'N 6 31va 31va ans

TINN N 0'G | HIGWNN al DOHd

X3aNI| TINN'N 0‘c | HIGWNN ON roYd
X3ANE'N] TINN'N| Md 9 HVHO ON"HO INIVW JONVHO INIVIN
aweN ejqel BujApspun ghaxepu| zSIINN Aoyt | wipm adAL awieN uwnjod awiBN MaJA 10 3lqeL

sojqel XvA

(0€ 30 8) suopeoyvedg |edlUYI8l —SMaIA Pue sojqe) eseqeleq T3S “Z-¥ elgeL

4-31

1000044371

X3ANI 3NDINN = X3IANI Mg

TINN LON = 717NN 'Ng
AT AHVYWIHC = Mdy

X3aGNI'n| TNN'N| Md o€ HVHO 3INVYN g1314
X3ANI'N] TINN'N| Md o€ HVHO INVN 319Vl OND3S Od
TINN N ot HVHO SN1VLS
TINN'N 9 HVHO 3dALl WHO4
X3ANI| TINN'N 9 HVHO ON WHO4
X3ANI'N| TINN'N 0 ‘01 | HIFAWNN ar INIVW
X3IaNI'A| TINN'N| Md 0°‘S | H3GWNN ai ©0dd
X3IANI'N| TINN'N| Md 6 31va 3lva ans
X3aNnI'n| TINN'N| Xd 0 ‘€ | H3GNNN ON rodd rodd LNIVIN
TINN'N 2 '0l | Y3GWNN HH SSV10
XAANI'N| TINN'N| Md 01 HVYHD SSY10 LNIVIN
X3aNI'Nn| TINN'N| Md| o'0r | y3aawnN ar INIVN SHH SSV10 INIVN
X3IANI'N| TINN'N o1 HVYHO 123rg0 HO
X3IaNi'Nn} TINN'N] Md 9 HYHO ON HO INIVW| S103rg0 HO LINIVW
TINN "0'v | HIGWNN | QOW3Y aav dWoo
TINN 0‘v | H3GWNN | 3SN3Y AAv dWOD
o (Q.LNOD)
TINN 0'v | Y38WNN M3N aav dnoo JONVHO LNIVN
sweN eiqel Buuepun cPexepu) ZSIINN Aot | yipim od/L sweN uwnjo) OWEBN MIJA 10 9|gel

s8jqel XVA

(o€ 10 6) suoneayoeds [ealuysel—smelA pue sejqel eseqeieq T3S "Z-b OjqelL

4-32

1000044371

X4ANI INDINN = X3ANI Ng
TN LON = TINN ‘Nz
AIN AHVINIHC = Xd,

X3IANI'N| TINN'N| Xd] HVHO ANVN NdD

X3ANI'N] TINN'N| Xd 6 3lva 31va ans
X3aNI'n| TINN'N Md 0 ‘e | H3AWNN ON roydd 1VLIS NdO rodd

TINN] HVYHO SNLVLS 3AILOV

TINN] HVHO IdAL MOHd

X3aNI'n| TINN'N 0'¢ | YIaWNN ON rOYd
X3aNI'N| TINN'N| Md 8 HVHO IWVYN rOHd 193royd

TINN'N 6 alva AYINT 3lva

TINN 0 HVHO AWYN 1INd

X3aNi'n| TINN'N G4 HVYHO INVN WHOA
X3aNI'N| TINN'N| Md| 0°'S| "H3GWNN al ©0Hd J3INNOSH3d

TINN N 0z HVYHO 34 1iNO

TINN N oe HYHO ONILNOY LNO

X3aNI'N| TINN'N 0 ‘01 | H3IBWNN ON LdIHOS

X3IaNI'N| TINN'N| Md 02 HVYHO JNVYN LdIHOS
X3aNI'N| TINN'N| Md 02 HVYHO H3sSN vHO 1diH0S WH3ad
TINN 'N 0°'01 | H38WNN OND3S XvW | (Q.LNOD) OND3S Od
ewepN ejqel Bulfgepun gpaxapu| zSIINN Aoy | wipim odAL oUIBN UWN|0D owIRN MIJA JO ojqel

s3|qe), XVA

(0€ 30 01) suoneayoeds |edjuydal—SMelA pue sejqel sseqeleg T3S "Z-v 2lqel

4-33

1000044371

X3ANI 3NDINN = X3ANI Ng
TINN LON = TINN "Nz
AN AHVWIHC = Md,

TINN 0'L| H3ANNN AN a0 1
TINN 0 'L | "H3aWNN 3INIT AOW L
TINN 0°‘L| H3ANNN 3INIT M3IN L
TINN 0 ‘L | H3IANNN ANt L
TINN 0'v | HIGNNN WOO 1L
TINN 0'v | H3GNNN SAS L
X3IaNI'n| TINN'N Md 6 3iva alva ans
X3IANI'N|] TINN'N| Md 0'c | YIEWNN ON rodd 1S3 rodd
X3anNi'n{ TINN'N 0 ‘0l | HIAWNN ara
TINN'N 9 HVHO IdAL WHOA
TINN'N]| HVYHO SN.vVLS
X3aNI'n| TINN'N 9 HVHO ON WHO4d
TINN'N 0°‘S | HIGWNNN al ooud
X3aNi'n| TINN'N| Md 6 alva 31va ans
X3ANI'N| TINN'N| >d 0 't | H3AWNN ON roYd 4Sd rodd
TINN 0'9 | H3ANNN NNY L
_ _ (@1NO02)
TINN 2 '0} | HIGNNN SHH TVLOL 1V1S NdD rodd
eweN ojqel BujApepun | cpexepuj zSIIPN Aox | yipim odAL awIBN UwWnjo) OWIBN MBIA 10 9jqel
so|gel XVA

(o€ 10 11) suoneoytoeds |edjuyoel—smelA pue sejqe) eseqeleq 73S "2- elqel

4-34

1000044370

X3ANI INOINN = X3ANI Ng
TINN LON = TINN ‘Nz
AIM AHVNIH = Md,

TINN 0'9 | H3AWNN HO HO
TINN 0'v | HIGWNN QOW Yo
TINN 0L { YIGWNN aANIT YO
X3aaNI'N| TINN'N Md 6 Alva 31va 9ns
X3aNI'nf MNN°N Md 0 ‘€ | HIGWNN ON rodd HYO rOYd
X3ANI| TINN'N o1 HYHO SNLVYLS
X3ANI
X3aaNI'nf TINN'N d 9 HVYHO 3dAL WHOA
X3aNi'N] TINN'N 9 HYHO ON WHO4
X3aNI N{ TINN'N d 6 31va 31va ans
X3ANI'N| TINN'N Md 0 ‘c | Y3GWNN ON roYdd WHO4 rodd
TINN 6 31vd 31vQ GN3
TINN'N 6 a1va 31va 14V1S
X3ANI N | TINN'N Md (o] HVHO 0D 3SVHJ
X3AaNI'n| TINN'N Md 6 31va 31vQa 8ns
X3aaNI'n|{ TINN'N Ad 0 ‘€ | H3IGWNN ON rodd 3ISYHd 1S3 rodd
TINN 2 ‘0L | H3aWNN HH Y3S
TINN 2'01 | H3GWNN UH NVW
TINN 201 | H3GWNN HH Oo"d| (Q.INOD) 1S3 rodd
aweN ojqel BujApspun ghoxapu| ZSHNN Lot | uipim adAL aweN uwnjo)d WeN MIIA 10 djqel

sa|qeL XVA

(o€ 10 Z1) suoneoyioads jeoIUYI9L—SMBIA pue sa|qe] aseqeleq T3S "g-v dlqel

1000044370

X3ANI INDINN = X3ANI Ng
TINN LON = TINN "Nz
A AHVYNIHC = Md,

X3IANI'A| TINN'N| Md ol HVHO 7 ANOD3S

X3aNI'N| TINN'N| Md ot HVHO 3dAL SVaNW
X3aNI'N| TINN'N| Md 0 ‘c | H38WNN ON roHd 03S 43S rodd

TINN 0l | H3gWNN A1VNIVAS

X3aNI'N| TINN'N| Md ol HVHO JdAL SY3INW
X3aNI'N| TINN'N] Md 0 '€ | H3GWNN ON roydd 43S rodd

TINN 0'S | HIAWNN NNY S3y

TINN ¢ ‘0l | Y3aNNN HH S3Y

X3ANI'N| TINN'N| Md ot HYHO IWYN S3d

X3ANI'N| TINN'N| Md 6 31va 31va ans
X3ANI'N] TINN'N| Md| 0°‘c|y3aawnN ON rOHd QoYyd rodd

X3ONI'N| TINN'N 0'S | HIAWNN ars

X3ANI'N| TINN'N| Md ol HYHO 3dALl 3LON
X3ANI'N| TINN'N| Md| 0°‘c|H3annNN ON rodd S310N roYd

TINN'N 6| 3iva 31va ans

TINN N g9 HYHO S3OVSSIN

X3ANI'N| TINN'N| Mdd| 0'c| H3IaNNN ON 3NI1
X3ANI'N| TINN'N| Md| 0S| H3gnnNN ars S3OVYSSIN rodd
owieN ejqel m:;_._ov.._: ntoxmﬂ:_ Nn___.-z —>Ov__ UIPIM on;__. OWEN uwnjod OWIEN MOJA 10 9|qel

sa|qel XVA

(o€ J0 £1) suopeoyioeds |eajUYdel—SMBIA pue sejqel eseqeleq T3S "Z-b OlqeL

4-36

100004437L

X3ANI 3NDINN = X3ANI Ng

TINN LON = TINN ‘Nz
AT AHVNIHC = Xd,

TINN 0'9 | H3GNNN vis ax3a L

TINN 0'v | H3aWNN QoW a10 L

TINN 0'¥ | H3GNNN GOW QOW L

TINN 0 ‘v | HIANNN AQOW M3N L

TINN 0 ‘v | H3GWNN oW ax3 L

TINN 0'9 | H3aNNN INIWWNOD L

TINN 0 ‘9 | HIAWNN aNIT Q10 L

TINN 0'9 | H3GNNN 3INIT AOW L

TINN 0'9 | H38WNN 3INIT M3N L

TINN 0 ‘L | YH3GWNN aNIT L

TINN 0'9 | H3AWNN 200 1

TINN 0'9 | Y3GNNN HO L

TINN 0 ‘v | H3GWNN WOO L

TINN 0'v | HIGNNN SAS L

TINN 20l | H3AWNN HH H3s

TINN 2'0L | H3AWNN HH NVYW HO3lL

TINN'N 6 31va 3lva ans
X3aNi'n] TINN'N] Md| 0°€| H3GWNN ON rodd 1V1S royd
aweN ajqel Bujfpepun | cpexapul zSIINN Loy | wipim edAL aweN uwnio) QWEBN MIJA J0 9|qeL
s9|qeL XVA

(0€ 10 v1) suopeopioads |ealUYO9]—SMelA pue se|qeL eseqeieq T3S 2-¥ olgeL

4-37

1000044371

X3ANI ANDINN = X3ANI 'Ng
TINN LON = TINN "Nz
AIX AHVIIHC = Md,

TINN N Gl HVYHO NOILONNA
TINN N o¢ HVHO INIvA
XIANI'N| TINN'N| Md ot HVHO 3009 $3d00 d3y
X3aNI'n| TINN'N 0°'S | H3GNNN ai Asans
TINN'N 6| 3iva a1va ans
X3ANI'N] TINN'N| Md S HVHO Jdd ans
X3ANI'N| TINN'N Ad 0 ‘€ | H3GWNN ON rodd ans royd
TINN 0'9 | HIBNNN SINLS OWIXT L
TINN 0'9 | H3aWNN V1S OWIXT L
TINN 0 'y | H3GNNN QOW ONIX3 L
TINN 0'9 | Y3GNNN INIT OWLXT L
TINN 0 ‘9 | H3aWNN SINLS 410 1
TINN 0 ‘9 | H3aWNN SIWLS QOW L
TINN 0 ‘9 | HIGWNN SIWLS M3N L
TINN 0'9 | H3A8NNN SINIS 1
TINN 0 '9 | H3ANNN IvisS 1o L
TINN 0'9 | H3GNWNN 1V1S QOW L
TINN 0 '9 | H3FWNN 1v1S M3aN 1| (Q.LNOD) LvLS rOHd
eweN ojqel BujApepun | cpexepul ZSIINN Aoyt | uipim odAL SwieN uuingo) SWIEN M3JA 10 8jqey.

sa|qel XvA

(o€ 10 G1) suopeayioeds [eojuydeL—SMe|A pue sejqe) eseqeleq T3S “Z-b OIqeL

4-38

1000044371

3SN IHNLND HO4 @3INIVL3Y ‘3718VL ALdWIy
X3ANI 3NDINN = X3ANI "Ng

TINN LON = TINN "Ng

AT AHVIWIHC = Md,

X3AANI'N| TINN'N Md 0e HYHO IWNVN Q131
X3ANI'N| TINN'N Md o€ HVHO INVYN 318vL OND3S

_ NOILO33S

TINN 0l HVYHO 3dAL 1HOd3Y

TINN'N 02 HVHO 3dAL 14043y

TINN oL HVYHO 3009 14043y

X3aANI'N] TINN'N Md 0'c { YH3GWNN 03S 1HOd3Y
XIaNI'N| TINN'N Md| 0°0L | H3IgnNN ON 1dI"0s 1HOd3Y 1dIH0S

X3ANI'n| TINN'N Md 8 HVYHO INVN roYd

X3aNI'N{ TINN'N Md 0 ‘¢ | H3AWNN 03S 14043y
X3aNI'N| TINN'N M»d| 001 [Y3gWNN ON LdIHOS S103rO4Hd 1diH0S

TINN 6 3iva 31va an3

TINN 6 3iva 31vQ 1YvlsS

TINN 0°S | HIGNNN 3000 40 S3NIN

TINN 0°‘G | H3GWNN WOO WNN

1NN ol HVYHO AdAL rodd

TINN'N d 0 ‘€ | HIGNNN 03S 140d3Y
TINN N Md| 0°0t | HIGWNN ON Ldi"9S ySNOILIANOD d3Y
sweN 9jqel Bujlispun gpoxapu| zSIIPN Aoy | wipim odAL QWBN UWIN|0) QWeN Ma|A 10 3|qel

s3|qe) XVA

(0€ 10 91) suopeoyoads [edjuyosl—smalA pue sejqel eseqeleq T3S "Z-b 9lqeL

4-39

1000044371

X3ANI 3NDINN = X3AANI Ng

TINN LON = TINN ‘Nz
ATM AHYWNIHA = Md,

TINN ! HVHO AHd 313130

TINN ! HVHD Aldd 31vadn

TINN ! HVYHO Aldd 1HASNI

TINN ! HVHO Al"d 10313s

X3IaNI'N| TINN'N Md 0z HVHO SSVY10 H3ISN
X3aNi'n| TINN'N Md ov HVYHO INVYN 31avL IDIAIHG 319VL

TINN N 6 3iva 31va WOO

X3ANI'N| TINN'N 0 ‘L | H3ANNN ON WOO

X3ANI'N| TINN'N| Md ov HVHO INVYN WOD
X3IANI'N| TINN'N Md 0'S | HIBWNN ai Asans WOO ans

TINN 0] HYHO NOILONNS

TINN'N o HVHO INVYN
X3ANI'N| TINN'N] Md| 0°‘S| H3annn air Asans W3L1SASENS

TINN'N 2 ‘0l | H3GNNN HH 10V

XIONI'N| TINN'N| Nd o} HVHO ALAILOY dS
X3ANI'N] TINN'N| Md| 00t | HIGWNN ai 443 1OV WI03dsS
TINN'N 0 '0l | H3AWNN ONDISXYW (Q.LNOD) OND3S
eweN ejqel Bufpepun | pexepul ZSIINN Aoy | yipm odAL ouIeN uwNjo) eBN MBJA 10 8jqe)

s91q8l XVA

(0€ J0 £1) suopeoyioeds |eajuysa)] —sma|A pue sajqel eseqeleq T3S "Z-b 9IqeL

4-40

10000443701

X3ANI INDINN = X3ANI Ng
TINN LON = TINN "Nz
AT AHVYWIHA = Xd,

TINN 20l | H3AWNN SHNOH
TINN 6 31va Ava 1vs
TINN N Gl HVYHO INVN WHOS SHHNVW dWal
TINN Md| 0°0t | H3anNN ON LdI"OS
TINN Md 0‘c | H3AWNN ON rodd
TINN 9 YVHO 3dAL WHOA
TINN 0°G | Y3GNNN dl ®oyd
TINN 6 aiva 31va ans 1OWHOL4 dW3l
TINN d 0l | Y3aWNN ON Ldidos
TINN 14 HVHO ovid
TINN ¢ ‘0l | HIGWNN HH ans
TINN ‘N Md 0 ‘e | YHIGNNN ON roHd
TINN 20t | H3aNNN SHNOH
TINN 6 alva AvQ 1vsS
TINN'N 0l HVHO ALIALOV ALIAILOY dN31
TINN | HVHO AlHd X3aNI
_ (Q.LNOD)
TINN L HVHO Aldd H3 LV JOI VAN 319vL
suieN 9jqel BujAapun | cpaxapul ZSIPN Aox | wipim odAL QWIEN UWNjo) SWEBN Md}A 10 3jqel
se|qeL XVA

(o€ 30 g1) suojieoyoads [eoJUYIE]—SMBIA pue So|gel eseqeleq T3S "2 alqel

4-41

10000443701

X3ANI INDINN = X3ANI Ng

TINN LON = TINN ‘Nz
AIX AHYWIHC = Xd,

TINN 'N Md 0 ‘e | H3GWNN ON rodd
TINN 2 ‘0l | ¥3gNNN SHNOH
TINN 6 31va Ava 1vs
TINN'N Gl HVHO INVN WHOAS SHHAHIS dW3l
TINN ‘N] HVHO SNIVLS 313130
TINN N 0l HVHO SNLVLS NNY
TINN 02 HVYHO 314" 1N0
TINN N 02 HVHO ONILNOY LNO
TINN°N (174 HVHO al $S3004d
TINN'N 02 HVYHO H3sN vdO
XIANI'N| TINN'N| Md| 0°0L | H3GWNN ON 1diHoS 1dIH0S dW3L
TINN Md| 0°0L | HIgGnnNN ON 1dIH0S
TINN 0 ‘01 | H3IAWNN ad
TINN 14 HVHO ovd
TINN 2'01 | H3GNNN HH ans
TINN 0 ‘s | H3GWNN dl ©0o4d
_ (a.LNOD)
TINN'N| Md 0 ‘€ | H3aWNN ON rodd SHHNVW dW3L
aweN ajqel BujApepun gPexepuj ZSIIPN Aox | uipim odAL SWBN UWN|0) AWEN M)A 10 3|qe)l

sajqeL XvYA

(o€ Jo 61) suopeoyioeds |edjuyoal —smalA pue sejqe) eseqeleq T3S "Z-b oiqe.

4-42

1000044371

X3AaNI INDINN = X3ANI Ng

TINN LON = TIAN "Nz

AN AHVYNIHC = Md,

TINN N SL YVHD aNIvA
X3aNI'N| TINN'N Md (1] HVYHO 3009
X3ANI'N| TINN'N| Md 02 HVHO IWVYN o NOLLYAITVA
X3IaNI'N| TINN'N| Md ot HVYHO AdAL SS300V
B 3 $S300V
X3GNI'N] TINN'N| Md 02 HVYHO SSV10 H3asn SSVY10 H3SN
TINN N (174 HVYHO SSY10 "3sSN
X3IANI'N| TINN'N d 02 HVHO al 43asn vHo SSV10 H3IsN
TINN 0l HYHO | 1vD NIDIHO VNI
TINN 0 ‘9 | H3IGNNN INIS D
TINN 0'9 | Y3IANNN AN O D
TINN 0'9 | H3AWNN aNIT D
TINN 0'9 | H3IGWNN $3ax3 o
TINN 'N Ad 0°L| H3GNNN ON WOD IVLS WOO 1L
TINN Md| 0°0L| H3GNNN ON LdIHOS
TINN 0 ‘0l | H3AWNN ard
TINN 14 HVHO Ov1d
N (aLNOD)
TINN 0's | H3GWNN al o04d SHHAHIS dW3l
eweN ojqel BujApspun ¢poxepu) zSIIPN Lot | vipm edAL oWEBN uwnjo) QWIBN MOJA 10 9|qeL

$Iq8L XVA

(o€ 10 02) suopeoyioads |eajuYda]—SMIIA pue sejqel eseqeied T3S "2-b elqeL

4-43

1000044370

X3ANI 3NDINN = X3AdNI 'Ng

THAN LON = TINN "Nz
AT AHVINIHC = Md,

NOILVAITVA TINN'N GL HVHO INIvA
NOLLYAINVA TINN'N Md ol HVHO 3009 HO WOOJ VA
NOILYAIVA TINN N SL HVHO ANTVA
NOILVAITVA TINN'N| Md ol HVHO 3009 ALIALLOY 10 VA
NOILYQINVA TINN'N SL HVYHO INIVA
NOLLVAINVA TINN'N| Md o] HVHO 3009 3dAL HO VA
NOILYQITVA TINN'N SL HVYHO INVA
NOILYQINVA TINN'N|] Md o] HVHO 3009 103r40 HO A
NOILVQIIVA TINN'N SL HVHO ANIVA
NOILYQINVA TINN'N| Md o} HVHO 3009 SSVY10 HO VA
NOILYQITVA TINN 'N SL HVHO aNIvA
NOILYQITVA TIN'N| Md oL HVHO 3009 3ISNVO HO VA
NOILYQITVA TINN'N SL HVHO ANTVA
NOILYQINVA TINN'N| Md ot HVHO 3000 | 3JYNIV3I4 vavy VA
NOILVQITVA TINN'N SL HVHO INTVA
NOILYQITVA TNN'N| Md ot HVHO 30092 ALIALLOY VA
NOILYQITVA TINN ‘N SL HVHO ANIvA
NOILYQINVA TINN'N| Md 0L HVHO 3009 | SNLVLS 3ALLOY VA
oweN ejqeL BujAyepun | cpexapu) ZSIINN Ao | yipim edAL SweN uwnjo) SWIBN MIJA 10 9jqeL

s9|qeL XVA

(o€ J0 12) suopeojioeds jeajuydel—smelA pue sejqel eseqeleq 13S “Z-t olqel

4-44

1000044371

38N 3HNLNL HO4 A3NIVLIH NOILINIZ3A -LSIX3 LON S300 M3IAg
X3ANI INODINN = X3ANI Ng

TINN LON = TINN "Nz
AIX AHVNIHC = X1d,

NOLLYQINVA TINN N SL HVHO IANVA
NOILVYQIIVA TINN'N| Md oL HVHO 3009 SSV10 HYI WA
NOILYAINVA TINN'N GL HVHO INTVA
NOILYQITVA TINN ‘N Md 0l HVHO 30090 S3YV YY3I VA
NOLLYQINVA TINN N SL HVHO ANIVA
NOILLYQITVA TINN N Md o]} HVHO 3009 ASNVYOV HY3 VA
NOILYQITVA TINN N SL HVHO INTVA
NOILVAIivA TINN'N] Md o] HVHO 3009 13941 4SQ VA
NOILYQITVA TINN N SL HVHO 3INTVA
NOILYQINVA TINN'N| Md 1] HVYHO 34090 SN1VLS 4Sd VA
NOILVAITVA TINN N SL HYHO aNvA
NOILVQITVA TINN'N| Md oL HVHO 3009 | 3IHNSYIW 4SA VA
NOILVAITvA TINN N GL HVHO ANTVA
NOILVYQAITVA TINN'N| Md] | HVHO 3009 UVAY VIVa VA
NOILVAITVA TINN N GL HVYHO ANTVA
NOILLVQIVA TINN'N d 0l HVHO 3009 IdAL WOD VA
NOILVYQITVA TINN N GL HVHD ANTVA
NOILYAITVA TINN'N| Md 0l HVHO 30090 { 3S0dHNd WOQ VA

awepN 9jqel Builtepun gPoxepu] ZSIINN Aoyt | uipim odAL SWIBN Uwnjo) QWEN MOJA 10 8|qe]

sa|qel XVA

(o€ Jo 22) suoneoy|oads jeojuyssl—SMe|A pue sajqel eseqejeq 73S “2-v dlqelL

4-45

1000044371

X3ANI INDINN = X3ANI 'Ng

TIAN LON = TINN 'Ng
AN AHVIIHC = Md,

NOILYAITVA TINN'N SL HVYHO anivA
NOILVAITVA TINN'N Md 0l HVHO 3000 | HO WOD LNIVIN VA
NOILYQAITVA TINN°N SL HVYHO 3aNIvA
NOILVQITVA TINN'N Ad 0l HVHO 3409 SSV10 INIVW VA
NOILYQITVA TINN'N SL HVYHO 3INIvA
NOLLYQITVA TINN'N Md 0l HVYHO 3009 | IdAL HO LNIVA VA
NOLLYQITVA TINN'N +7] HVYHO aNIvA
NOILVQITVA TINN'N Md ol HYHO 3009 LOV INIVIW VA
NOILYQAITVA TINN'N *7 HYHO aNTvA
NOLLYQINVA TINN N d] HVYHO 3009 HO OSI TvA
NOILVYQAITVA TINN N SL HVYHO INIvA

_ B _1vo
NOILLVQITVA TINN'N d o] HVYHO 3009 NIDIHO TVNI4 VA
NOLLYQITVA TINN'N 72 HYHO INIVA
NOILLYQITVA TINN'N Md] HVHO 3009 ST00L HYI VA
NOILLYQIVA TINN'N SL HYHO aNvA
NOILYQITVA TINN N Ad 0l HVHO 3009 JOHNOS HYI VA

eweN ojqeL BujApepun | cpaxepu) ZSIINN Aoy | wipim edAL SweN uwnjo) BUWEN M3IA 10 9jqe]

§3|qeL XVA

(o€ 10 £2) suopeoypoeds |edjuyoe] —smelA pue sejqel eseqeleq 13S "Z-b oIqeL

4-46

1000044371

3SN JHNLN4 HOH A3ANIVLIH M3IA ‘G3NI43A L1ON S3A0D NOILVAIMVA ONIANOdSIHHOD,
XAAN! 3NDINN = X3ANI 'Ne

TIAN LON = TINN ‘Nz
A3 AHVWIHA = Md,

NOILYQITVA TINN'N GL HVHO INIVA
NOILVAIVA TINN'N| Md 04 HYHO 3009 7 ANOD3S WA
NOILYQINVYA TINN N SL HYHO 3aNIVA
NOILYQITVA TINN'N| Md ot HVYHO 3000 | 330D 1HOJd3H VA
NOILYQITVA TINN N SL HVHO 3INIVA
NOILYAINVA TINN'N Md] HVYHO 3009 SNIVLS VO A
NOILVAITVA TINN'N SL HVHO INIVA
NOILYQAITVA TINN'N| Md o4 HYHO 3009 AdAL rodd A
NOILVAITVA TINN'N GL HVYHO ANIVA
NOILYQITVA TINN'N|{ Md ol HYHO 3009 00 3SVHJ VA
NOILVYQAINTVA TINN N SL HVHO ANIVA
NOILVYAITVA TINN'N| Md oL HVHO 3009 AdAL 1HO VA
NOILYQITVA TINN N SL HVHO ANIvA
NOLLVQITVA TINN'N Ad 0l HVYHO 3009 3dAL 3LON WA
NOILYQITVA TINN'N SL HVHO ANIvA
NOILYQAIvA TINN'N Md (1] HVHO 3009 AdAL SY3W VA
NOILYQINTVA TINN N SL HVHO ANIVA
NOLLYQITVA TINN N Md] HVHO 30090 | HO OSI INIVW VA
swieN ajqel BujApspun gpaxapu| ZSIINN Aot | uipim odAL QWeN uwnjo) SWEBN MIJA 10 9|aBL

sa|qel XVA

(o€ 10 ¥2) suoneoydeds |edjuydal—SMOIA pue se|qel eseqejeq T3S '2-v elqeL

4-47

100004437L

X3ANI INDINN = X3ANI 'Ng

TINN LON = TINN 'Ng
AN AHYWIHC = Md,

ans 443 TINN ‘N S HVYHO 3dd ans
103royd TINN'N 8 HYHO IWVN rodd 10V 8NS rodd A
WOO ans TINN ‘N 0'Z | H3GWNN ON WOO
WOO dans TINN ‘N Md ov HVYHO INVYN WOD
gNS rodd TINN'N Md G HVYHO IYyd ans
103roydd TINN'N Md 8 HYHO IWVYN rOHd WOD rodd A
1dIHOS WH3ad TINN N 02 HVHO AWVN LdIHOS 1dIH0S WH3d A
3 B $103rodd
103royd TINN'N 8 HVHO INVN roYHd WOOYNVYIID A
10V 443 TINN ‘N Y39NNN HH 10V
10V 443 TINN'N 8 HVYHO ALIAILLOV
LoV 443 TINN'N Nd| 0°0L | Y3GWNN al 443 | 10V WOOHNVITIO A
NOILVYQIVA TINN'N S HVHO INTVA
NOILVAITVYA TINN'N Md] HVYHO 30090 NOILONNA™ S VA
NOILLVQIVA TINN'N GL HVYHO aNvA
NOLLYQITVA TINN ‘N Md o] HVYHD 3409 SNIVLS VA
NOILLVQINVA TINN N 6L HYHD ANTVA
NOILLYQITVA TINN ‘N Md 0l HVHO 3000 ALIAILOY dS VA
awenN ojqey BujApepun | cpexapu) ZSIINN Aot | wipim odAL aweN uwnjo) aweN ma|A 10 8|qel

sa|qel XvA

(o€ Jo 62) suoneayoeds |eajuyoel—smelA pue ssiqey aseqeleq T3S "Z-b ajqeL

4-48

1000044371

X3ANI ANODINN = X3ANI 'Ng

TINN LON = 11NN ‘Nz
AN AHVWIHC = Md,

103royd TINN N Md 8 HVHO JWVN rOHd
gns rodd TINN'N 6 alva 31va ans
W3LSASENS TINN 0l HVYHD NOILONNA
W3L1SASENS TINN'N oy HVHO INVYN

gNs rodd TINN'N Md S HVYHO JUd 8NS| O4NIWILSASENS A
ONOD3S TINN N 0 ‘01 | H3AWNN ONDISXVW
OND3S TINN N oe HVHO IWVN G131

OND3S TINN N 0e HVHO INVN 318vL OND3S A

B , B VIH3LIHO

$30q090 d3y TINN N 0E HVHO 3INTVA $3000 d3Y A
10V J43 TINN'N 2'01 | HIAWNN HH 10V

B _ (a@.1NO9)

10V 443 TINN ‘N 01 HVHO ALIALLOV LOVY 9NS rodd A

aweN 9jqel BujApapun ghexepu| zSIINN Aext | wipim adAL aWEeN uwnjo) SWEN MIJA 10 9jqBL

s91qeL XVA

(o€ 10 92) suonesyioads |eojuydal—SMe|A pue sajqel eseqeleq 73S "¢-v elqel

4-49

10000443701

X3ANI INDINN = X3ANI "Ng
TINN LON = TINN ‘Nz
AN AHVIWIHC = Mdy

TINN'N 6 31va AHIN3 31va
(1] HVHO INVN TN
TINN N Sl HVYHO JWVYN WHO4
X3ANI'N| TINN'N| Md| 0°S| y3gnnN al ©oHd T3INNOSYH3d
! HVHD N3aaiH ANWNG
TINN'N 0'S | y3annN INTVA 1394VL
TINN'N| Md o} HVHO 3000 13OHVL
TINN N Md 0l HYHO 3009 SNLVLS
TUNN'N| Md| 0'0t | HIGWNN aa 1394HvL 450
TINN N 0°G | HIGWNN INTVA 3HNSVYIN
TINN'N Md 0l HVHO 3000 3HNSVIN
TINN'N| Md ot HVHO 3000 SNIVLS
TINDN'N| Md| 0°0L | YIGWNN ara ~ 3UNSY3W d4Sa
TINN N 8 HVHO INVN rodd 1N03S010 dsa
TINN 'N 8 HYHO INVN rodd $101d4Sa
$S3090V SSY10 HIASN TINN 'N ot HVHO AdAL SS300V
SSVY10 H"3asn TINN 'N o2 HVHO al" ¥3sn vHo JZIHOHLNY
aweN ojqel BuiApepun cpexepu) ZSIIPN Loy | wipim odAL eweN uwnjo) QWBN MIIA 10 8jqel
sajqey Od

(o€ J0 £2) suopeoyjoeds |eajuyse1—sme|A pue sejqe]l eseqeleq T3S "Z-b olqeL

4-50

1000044371

X3ANI INDINN = X3ANI 'Ng

INN LON = 71NN 'Ng
AIA AHVWIHC = Md,

! HVHO Aldd 1H3SNI

! HVHO Al”dd 10313S

X3aNI'n] TINN'N| Xd 02 HYHO SSY1D H3SN
X3ani'n| TINN'N| Md ov HVHO IWVN I1aVL 393 NIHd 31avL

TNN N 0 ‘0t | H3IAWNN OND3ISXVYN

X3aani'n| TINN'N| Md o€ HVHO INVYN Q1314
X3ANI'N| TINN'N| Md (1] HVHO JNVYN 318VL OND3S

X3aNI'N} TINN'N 0 ‘01 | HIGWNN aa

TINN ‘N 9 HVHO 3dAL WHOAS

TINN'N ol HYHO SNIVLS

X3aNI'n] TINN'N 9 HVHO ON WHO4d

TINN'N 0°'G | HIANNN al voud

X3aaNni'n| TNN'N| Md 6 31va 3lva ans
X3IaNI'n| TINN'N d 0 ‘¢ | HIANNN ON roYd 480 rodd

]| HVHO SNLVLS 3AILOV

] HYHO AdAL rOYd

X3aNI'N| TINN'N 0 ‘¢ | HIAWNN ON rOoHd
X3aNI'n] TINN'N| Md 8 HVHO INVN rOdd 103rodd

owepN 9qel. BujApepun gpaxapu| ZSIINN Aot | uipim odAL W8N UWNIoD QUIBN MI|A 10 9jqel
s9|qel Od

(o€ 30 82) suoneapoads |edluydel—SMaIA pue sejqe) eseqeieq 73S ¢-¥ olqel

4-51

1000044371

X3ANI 3NDINN = X3ANI Ng

TN LON = 1NN ‘Nz
AIN AHYWIH = Md,

TINN N S HVHO ANTIVA
X3aNI'N| TINN'N| d (] HVHO 34090
XaaNI'n|{ TINN'N| Xdd 02 HVYHO INVYN 4 NOILYQITVA
X3IaNI'N| TINN'N| Md o1 HYHO 3AdALl SS300V
_ B $S300V
X3aNntr'n| TNN'N| Md 02 HYHD SSVY10 H3asSN SSY10 H3SN
TINN N 02 HVYHO SSV1Q HIsSN
X3IAaNI'N| TINN'N Md 02 HVYHO al ¥3sn vdo SSY10 H3ISN
0'S | H3ANWNN INTVA
0 ‘0l | H3BNNN aa
6 J1va 3lva ans
0°'S | HIGWNN dl ©0o4d
o] HVHO 3009
0 ‘t | H3IAWNN ON royd 4S50 dn3l
1 HVYHO Aldd X3aNI
1 HVHO Al"d Y31V
! HVHO AlHdd 3137130
_ (Q.LNOD)
! HVYHO AlHd 31vadn 393 INIHd 31gvVL
aweN ejqel Bulfpepun ghexepuj zSIINN Aoy | wipim edAL SWIEN UWINj0) ouIeN MIJA 10 9jqe)

(o€ 40 62) suopeoyioeds jeajuyoe]—sme|A pue sejqel eseqejeq T3S "Z-b olqel

s9jqel Od

4-52

1000044371

X3ANI 3NDINN = X3ANI Ne
TINN LON = TINN "Nz
A AHVWIHC = Md,

NOILYQINVYA TINN N GL HVHO 3NIVA
NOILLYQIVA TINN'N 0l HYHO 3009 1394VL 4Sa WA
NOILVAITVA TINN N SL HVHO INTVA
NOILLVAINVA TINN'N ol HVHO 3009 SNLVLS 4Sa WA
NOILYQITVA TINN N GL HVHO INTVA
NOILVAITVA TINN'N 0l HYHO 3000 | 3IHNSVIW 4SA 1vA
awep ajqel Bulfpepun | cpaxspul ZSINN Loyl | wipim edA1L ouwieN uwN|o) SUWIRN MIJA 10 ejqel

s9|qel Od

(o€ 10 0€) suoneoy|oeds |eojUYO8] —SMBIA pue s8|qel eseqeled T3S "¢-F 81qeL

Y,

4-53

1000044371

4.2 RELATIONSHIPS AND CONSTRAINTS AMONG DATABASE
TABLES

The SEL database is composed of two classes of information: the software engineering data
itself, and the information describing those data and defining their organization within the
database. The software engineering data are discussed in Sections 2 and 3. The descriptive
and organizational information stored in various tables and referred to from here on as
system support data are further described in this section.

4.2.1 Relationships Among Tables

In the SEL database, certain tables have relational dependencies among them. These depen-
dencies among tables are important and need to be observed, especially when insert, update,
or delete operations are performed. In a relationship, tables share common values existing in
one or more columns of each table. For example, table PROJECT and table PROJ_SUB both
share the same values of project number. When project data are first entered in the database, a
record containing the project name, project type, and project status is created in the PROJ-
ECT table. A unique project number is also assigned and stored in the same record. As the
rest of the project data are collected, they are stored in various tables. The relationship
between these tables and the PROJECT table is defined through the project number column.
(See Figure 1-1 for an example of this relationship between the PROJECT and PROJ_SUB
tables.)

Figures 4-1 through 4-3 depict these relationships and represent them as tree structures.
Figure 4-1 shows the relationships among project related data. Figure 4-2 shows the relation-
ships among DAMSEL support tables. Figure 4-3 shows the relationships involving project-
independent data.

In these figures, each tree is a logical entity of related tables. The name shown within each
block is a table name. The top node in each tree is the parent node, and the others are
dependent (child) nodes. Each dependent node occurrence in the tree must have a record in
its parent. For example, each record existing in table SUBSYSTEM that contains detailed
subsystem information must first have been created in the PROJ_SUB table, since the record
in the PROJ_SUB table contains the vital information—the project number and the subsys-
tem prefix. The name(s) shown at the upper left corner of each block corresponds to the field
name that links these tables together and can be used as a joining column. For example, field
COM_NO can be specified in a WHERE clause for joining tables SUB_COM and COM
PURPOSE. If the common columns in both the parent and child tables have the same name,
only one name is shown. Otherwise, both column names from these tables are shown and the
notation “=" is used to show that they share common values. The left-hand side of the
equality is the column name from the parent table; the right-hand side is the column name
from the child table. For example, to join tables EFF PROJ and EFF_ACT in a SQL SELECT
statement, the joining columns are P_ID from EFF_PROJ and EFF_ID from EFF_ACT.

The relationships between data elements and tables are described in detail in Reference 2.
However, some of these relationships are worth mentioning here so that the reader can

100044370 4-54

4108 LCrm0aL

12¥ WD WS

so|qel pajejay-1o9foid Buowy sdiysuone|ay -i-p ainbi4

_mgﬂwéa ..Q—— NID HHI HO = SV WYY 1O -— YAV HD M

[on 3o Jon somo Jow 3omio Jon 1omni

A 4430

ad43-ad

ON JONVHD

| () [][]]

[or nao [on moo Jon moo Jonmoo

=]

_

‘ g _Q‘G

238 435 MOHd —

4-55

! S3DVSSIN St St S19 280
— OMd 443 _ _ noD ans _ naisisans _ _ TOMd _ _mmﬁu_ziL— ~Lov tavm _ ﬁ.a vy
ON TOMd O SASaNs [a sasens a's

AL SYIM

—Q;:ﬁ(, —QJZ(’

Tt |

o ISVHA - s
‘ HHO NOHd ~—38u3§ —— 157 FOkd x——’iﬂao& ﬁ_ 153 roYd _— “Ndd NOUd _—mﬁgg_

(]

350 rOHd —
ON MOk

Jon rowd

Jon roud

Jow o

Jon roud Jon Toud Jon roms Jor rosa Jon Tow fon rouy Jom roud

Jon rows

}

10004437L

PERM_SCRIPT TEMP_SCRIPT

SCRIPT_NO SCRIPT_NO
GENERATE SAT SCRIPT_REPORT

REPORT_TYPE_SELECTION

SCRIPT_PROJECTS

SCRIPT_NO SCRIPT_NO SCRIPT_NO SCRIPT_NO
TEMP_ACTIVITY TEMP_FORMCT TEMP_MANHRS TEMP_SERVHRS
USER_CLASS_
ACCESS
~
%
USER_CLASS USER_CLASS S
e
TABLE_ 3
USER_CLASS PRIVILEGE é

Figure 4-2. Relationships Among DAMSEL Support Tables

understand how the data are logically divided and stored in the database. Observe that the
data elements that compose each of the major data groups presented in Section 2 may reside
in one or more tables, depending on the number of occurrences of a particular data element.
For example, consider the component information within the structure and size data group.
For each component of a project, all component-related data, such as origin, creation date,
type, etc., reside in the COM_SOURCE table, with the exception of the component pur-
poses. These reside in the COM_PURPOSE table because one component can have multiple
purposes. This logical partitioning of data was performed during the database design process
to ensure data integrity and minimize data redundancy.

For the same reasons, staff hours information within the resource usage data group resides in
different tables. Regular activity hours for all projects reside in the EFF_ACT table. The data
elements required for retrieving project-related activity hours, such as project and program-
mer IDs, are stored in the EFF_PROJ table. Additional data elements required for retrieving

100044371 4-56

COMPUTER

CPU_NAME CPU_NAME = RES_NAME
PROJ_CPU_STAT PROJ_PROD
PERSONNEL
PROG_ID PROG_ID PROG_ID PROG_ID
EFF_PROJ COM_SOURCE CHANGE PROJ_DSF
PROG_ID PROG_ID
MAINT_CHANGE MAINT_PROJ

10004437-g018

Figure 4-3. Relationships Involving Project-Independent Data

subsystem-related hours, such as subsystem prefixes, are stored in the EFF_SUB table.
Using this arrangement can minimize data redundancy. As mentioned in Section 2, many
projects do not have subsystem-related activity hours. Thus, depending on the project, the
activity hours may be retrieved from the EFF_ACT table by directly joining it with the EFF_
PROJ table, or via the EFF_SUB table. These relationships are depicted as connected lines in
Figure 4-1.

As for staff hours recorded for projects using cleanroom methodology, they can be retrieved
in one of two ways: as cleanroom PRF activity hours or as regular PRF activity hours. To
retrieve hours under cleanroom PRF activities, join the EFF_ACT table with the EFF_PROJ
table and specify the cleanroom activities. The cleanroom PRF activities are provided in
Appendix A of this document or can be viewed in the database by selecting codes and values
from the view VAL_CL_ACTIVITY. To retrieve hours under the regular PRF activities, join

100044370 4-57

.the view V_CLEANROOM_ACT with table EFF_PROJ. The mapping between the clean-
room PRF activities and the regular PRF activities is as follows:

Cleanroom PRF Activity/Code Regular PRF Activity/Code
Predesign (CLPREDES) Predesign (PREDES)

Create design (CLCREDES) Create design (CREDES)
Verify/Review design (CLVEREVDES) Read/Review design (RDREVDES)
Write code (CLWRCODE) Write code (WRCODE)
Read/Review code (CLRDREVCOD) Read/Review code (RDREVCOD)
Pretest + Independent test Integration test (INTTEST)
(CLPRETEST + CLINDTEST)

Response to SFR (CLRESPSFR) Debugging (DEBUG)

Acceptance test (CLACCTEST) Acceptance test (ACCTEST)
Other (CLOTHER) Other (OTHER)

In addition, some of the tables are used as connectors to relate data items that reside in
different tables. For example, consider the CHANGE_COM table within the change data
group. It does not contain any SEL forms data. It only contains two surrogate key fields,
change number and component number. The fields in this table can be used to connect the
change data with the size and structure data (i.e., project and subsystem data items stored in
various tables). Other tables, such as PROJ_SUB and SUB_COM, have a functionality
similar to the CHANGE_COM table.

4.2.2 Descriptions of Support Data Tables

The tables described in this section do not contain software engineering data. Rather, they are
used to store data that are internal to the database structure and to store data that are used by
the database operational software.

CLOSE_COF

This table is used during project closeout for verifying the accuracy and completeness of a
project’s COFs. This temporary table is cleared, populated with all the component informa-
tion for the specified project, queried, and cleared again.

CLOSE_COM_NO_ORIGIN

This table is used during project closeout for assigning a final “origin” category to each
component. For most components the final “origin” is the same as the COF origin. However,
any component with a COF origin of “Old and Unchanged” will be assigned a final “origin”
of slightly modified if any CRFs were submitted for that component.

10004437L 4-58

CLOSE_CRF

This table is used during project closeout for verifying the accuracy and completeness of a
project’s CRFs. This temporary table is cleared, populated with all the change information
for the specified project, queried, and cleared again.

CLOSE_CRF_ERR

This table is used during project closeout for verifying the accuracy and completeness of a
project’s CRFs with a change type of error correction (ERRCO). This temporary table is
cleared, populated with all the information about changes due to errors for the specific
project, queried, and cleared again.

CRF_TEMP_CHANGE_COM

This table is used by the DAMSEL CRF data entry programs CRF_INSERT, CRF_UP-
DATE, and CRF_QA. It contains the component information associated with the current
CRF form. The information is uniquely identified with a USER_ID, which is actually the
SESSIONID of the current user.

DUMMY

This table is used by DAMSEL data entry programs. It is updated with null values during
data entry to invoke, or trigger, certain sequences of operations to be performed.

GENERATE_SAT_DAY

This table is used in generating DAMSEL reports. It stores all the Saturday dates for reports
that display weekly information. Once the dates are used by a report, the corresponding
entries in this table are then deleted.

PC_SEQNO

This table is used by the DAMSEL DSF data entry software. The PROJ_DSF table contains
two columns that are system-generated numeric IDs: D_ID and FORM_NO. The
PC_SEQNO table stores the maximum value that already exists in PROJ_DSF for each of
these fields.

PERM_SCRIPT

This table is used in generating DAMSEL reports. It contains header information about the
permanent report scripts. A report script is built during interactive report selection via
DAMSEL. A script is identified by a script number and its owner’s ORACLE USER_ID.

REP_CODES

This table is used as a look-up table by the DAMSEL menus and screens. It contains all the
possible report types, report titles, report codes, and project selection criteria. Each entry in
the table contains a unique code and a descriptive value. The codes are stored, but the values
are displayed on the screens so that users will understand the contents of a report script.

100044371 4-59

SCRIPT_PROCJECTS

This table is used in generating DAMSEL reports. It stores the names of the projects that are
entered by a user for multiple-project reports with a REPORT_TYPE_SELECTION (in
table SCRIPT_REPORT) of “LIST.” The entries that are created for temporary scripts are
deleted once the report has been generated; the entries for permanent scripts are stored until
the script owner deletes the script.

SCRIPT_REPORT

This table is used in generating DAMSEL reports. It contains the definitions of both tempo-
rary and permanent scripts. The following information is stored for each report in a script: the
report type (e.g., single-project or multiple-project); the report code, which identifies the
report; the project(s) to be included in the report; and the report sequence number, which
identifies the location of the report within the script.

SEQNO

This table is used by DAMSEL data entry programs. It stores the maximum values already
used of all the system-generated IDs in the database. The following columns are system-
generated IDs :

Table Name Column Name
EFF_PROJ P_ID
EFF_SUB PS_ID
MAINT_PROJ MAINT_ID
PERM_SCRIPT SCRIPT_NO
PERSONNEL PROG_ID
PROJECT : PROJ_NO
PROJ_NOTES S_ID
PROJ_SUB SUBSY_ID
SUB_COM COM_NO
TEMP_SCRIPT SCRIPT_NO

TABLE_PRIVILEGE

This table is used in enrolling DAMSEL users. It defines the access privileges that each user
class may be granted for each table in the database. The valid privileges are select, insert,
update, delete, alter table structure, and create indices.

TEMP_ACTIVITY

This table is used for producing the DAMSEL Programmer Activity Hours reports. It
contains all of the possible activities for each week the project has been in a development

100044370 4-60

phase. For each activity and week, the total number of hours worked on the project is stored.
To populate this table, the GENERATE_SAT_DAY table must first be populated with the
correct Saturday dates.

TEMP_FORMCT

This table is used for producing the DAMSEL Project Form Counts reports. It contains the
total number of CRFs, COFs, and SPFs that have been entered since the project has beenin a
development phase. For each form type and week, the total number of forms entered is
stored.

TEMP_MANHRS

This table is used for producing the DAMSEL Manpower Hours reports. It contains all of the
programmer names for each week the project has been in a development phase. For each
programmer and week, the total number of hours worked is stored. To populate this table, the
GENERATE SAT DAY table must first be populated with the correct Saturday dates.

TEMP_SCRIPT

This table is used in generating DAMSEL reports. It contains header information about the
temporary report scripts that are created by each user during an interactive session. The script
owner, his/her process ID, the script status, and other script-related information are stored in
this table. The scripts are identified by script numbers.

TEMP SERVHRS

This table is used for producing the DAMSEL Services Hours reports. It contains all of the
support names for each week the project has been in a development phase. For each support
name and week, the total number of hours worked is stored. To populate this table, the
GENERATE_SAT_DAY table must first be populated with the correct Saturday dates.

T_COM_STAT

This table is used during project closeout to load the COM_STAT table. Records are loaded
from a flat file into T_COM_STAT via SQL*Loader. The T_COM_STAT rows and
SQL*Loader output are then verified by SEL personnel before the rows are inserted into
COM_STAT.

USER_CLASS

This table is used in enrolling DAMSEL users. It contains all users’ ORACLE user IDs and
their user class specifications. Currently, there are five types of user classes: general user,
librarian, quality assurance (QA), SEL database administrator (DBA), and system mainte-
nance user.

USER_CLASS_ACCESS

This table is used in enrolling DAMSEL users. For each user class specification, the types of
functional access permitted are stored in this table. The current valid types of access are
BACKUP, DBA, DELETE, DISTAPE, FORM, GENERAL, IMPORT, INSERT, QA,
QUERY, REPORT, RESTORE, UPDATE, UPDOWN, AND VIEW.

100044374 4-61

VALIDATION

This table stores all the codes and their corresponding detailed descriptions used by various
tables throughout the database. (Appendix A provides a complete list of all the codes and
their descriptions.) Fields that use coded values are listed below.

10004437L

Table or View Name

CHANGE
CHANGE
CHANGE
CHANGE
CH_ADAFEAT
CH_ERR_ARES
CH_ERR_GEN
CH_ERR_GEN
CH_ERR_GEN
CH_ERR_TOOLS
COM_PURPOSE
COM_SOURCE
COM_SOURCE
COM_SOURCE
COM_STAT
DSF_MEASURE
DSF_MEASURE
DSF_TARGET
DSF_TARGET
EFF_ACT
EFF_FORM
MAINT_ACT_HRS
MAINT_CHANGE
MAINT_CHANGE
MAINT_CHANGE
MAINT_CHANGE
MAINT_CHANGE
MAINT_CH_OBIJECTS

Field Name

CH_TYPE
EFF_COM_CH
EFF_ISO_CH
STATUS
ADA_FEATURE
ERR_ARES
ERR_ACAUSE
ERR_CLASS
ERR_SOURCE
ERR_TOOLS
PURPOSE
COM_TYPE
ORI_TYPE
STATUS
FINAL_ORIGIN_CAT
MEASURE CODE
STATUS_CODE
STATUS_CODE
TARGET_CODE
ACTIVITY
STATUS
MAINT_ACT
CH_CAUSE
CH_CLASS
MAINT_CH_TYPE
MAINT_COM_CH
MAINT_ISO_CH
CH_OBIJECT

Table or View Name

Field Name

MAINT_CLASS_HRS MAINT_CLASS
PROJECT ACTIVE_STATUS
PROJECT PROJ_TYPE
PROJ_EST_PHASE PHASE_CO
PROJ_FORM STATUS
PROJ_NOTES NOTE_TYPE
PROJ_SEF MEAS_TYPE
PROJ_SEF_SEC SECOND_L
SPECIAL_ACT SP_ACTIVITY
SUBSYSTEM FUNCTION
VAL_CL_ACTIVITY CL_ACTIVITY
VAL_DATA_AVAIL DATA_AVAIL
VAL_QA_STATUS QA_STATUS

4.2.3 Database Constraints

Various constraints are associated with the database. Constraints are defined to ensure that
the database contains only accurate and consistent data and to protect the data against
unauthorized or accidental alterations. In the SEL database environment, constraints are
identified as access constraints or data integrity constraints. Access constraints are
associated with each user class and are defined as follows:

e General user—Has read access to all data

e Datalibrarian—Has read, write, and update access to the form-related data
e QA—Has read and update access to certain form related data

e DBA-—Has read, write, and update access to all data

e System maintenance—Has read access to all data, and read, write, and update ac-
cess to system support data

Data integrity constraints are applied to all insertions to, deletions from, and updates of the
database. Table 4-3 describes these constraints. They are used not only in SQL queries, but
also in the DAMSEL data entry software. Table 4-3 lists only the database tables that have
constraints. In addition to these constraints, field EFF_ID in table EFF_ACT and table
SPECIAL_ACT contains values from both the P_ID field (in table EFF_PROJ) and the
PS_ID field (in table EFF_SUB). This constraint is accommodated by assigning mutually
exclusive values for P_ID and PS_ID.

100044371 4-63

4.3 MAPPING THE CONCEPTUAL VIEW TO THE LOGICAL
VIEW

This section presents a schema, shown in Table 4-4 (at the end of the section), that maps both
the conceptual and the data collection views of the SEL data described in Sections2and 3to a
unified logical view. The schema is intended to provide general users who would like to
retrieve data using SQL queries with more detailed information on how to get to the desired
data. By using this schema, along with the specific instructions on how to access SQL*Plus
in the SEL database environment (provided in Section 5.3), general users can set up their
own queries to look at the data in their own specific ways.

Table 4-4 lists all the reference IDs used in Sections 2 and 3 that identify the data items in the
database and presents the name of the table and the column where that data item is stored.
This table is ordered by target table and target column.

Required access information, needed to obtain a particular piece of data, is also provided for
each reference ID. Under the columns “TARGET TABLE” and “TARGET COLUMN?” is
the table/field from which data are being retrieved. For example, to retrieve the activity hours
for a particular programmer (see Table 44, under TARGET TABLE EFF_ACT and TAR-
GET COLUMN ACT_HR), the project name, the programmer name, and the week ending
date on the PRF must be provided before the appropriate activity hours can be retrieved.

Under the heading “Access Path,” there is a graph-like diagram showing the access path that
a SQL query may traverse to retrieve the desired data. The path shown is just one of the many
possible ways to get to the data; other paths can be used to achieve the same result. In each
access path, the names within square brackets [] represent column names. The names with
no brackets around them represent table names. The arrows point to either an intermediate
table or the final target column. The name of each target field that stores coded values is
followed by the keywords “*CODED FIELD.” The codes and their descriptions are ex-
plained in Appendix A. In addition, symbol “!=" means not equal to and MAX means the
maximum value of the column that follows.

Using the access paths in Table 4-4, the corresponding SQL queries can be formulated easily.
The following three examples demonstrate how to interpret the access path diagrams. They
also show that some of the access paths may retrieve a single record from a target table and
others may retrieve multiple records. In the first example, the access path will return one
record if one subsystem exists for the specified project; multiple records if more than one
subsystem exists; or null if no subsystems exist. In the second example, the access path will
return a single record that contains the creation date for the component specified by the user.
However, this access path can be modified to retrieve all the creation dates for all compo-
nents in a particular subsystem within a particular project. This can be accomplished by not
specifying the component name in the SQL query. The third example retrieves the same
information as example 2. The difference is that a view is joined to one table to simplify the
query and eliminate the need to join four tables.

100044371 4-64

Table 4-3. Constraints on Database Tables (1 of 6)

Table

Constraint

CHANGE

THE CRF FORM NUMBER (CHANGE_NO) MUST BE UNIQUE WITHIN THIS TABLE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE EFFORT TO ISOLATE CHANGES CODE (EFF_ISO_CH) MUST EXIST IN THE
VAL_ISO_CH VIEW.

THE EFFORT TO IMPLEMENT CHANGES CODE (EFF_COM_CH) MUST EXIST IN THE
VAL_COM_CH VIEW.

THE TYPE OF CHANGE (CH_TYPE) MUST EXIST IN THE VAL_CH_TYPE VIEW.

THE FORM TYPE (FORM_TYPE) MUST EQUAL 'CRF".

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

CHANGE_COM

THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE.

THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.

CH_ADAFEAT

FLAG INDICATING WHETHER THE USE OF ADA CONTRIBUTED TO THE CHANGE
(EFF_ADA) IN THE CHANGE TABLE MUST EQUAL ‘Y’ FOR THAT CHANGE.

THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE, AND THE

THE ADA FEATURE CODE (ADA_FEATURE) MUST EXIST IN THE VAL_ADA_FEATURE
VIEW.

CH_ERR_ARES

THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE, THE
CHANGE, AND EFF_ADA MUST EQUAL 'Y’

TYPE OF CHANGE (CH_TYPE) IN THE CHANGE TABLE MUST EQUAL 'ERRCO’ FOR THAT

THE CODE REPRESENTING THE RESOURCE NEEDED TO CORRECT AN ADA ERRCR
(ERR_ARES) MUST EXIST IN THE VAL_ERR_ARES VIEW.

CH_ERR_GEN

CHANGE.

THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE, AND THE
TYPE OF CHANGE (CH_TYPE) IN THE CHANGE TABLE MUST EQUAL ‘ERRCO’ FOR THAT

THE SOURCE OF ERROR CODE (ERR_SOURCE) MUST EXIST IN THE
VAL_ERR_SOURCE VIEW.

THE CLASS OF ERROR CODE (ERR_CLASS) MUST EXIST IN THE VAL_ERR_CLASS
VIEW.

IST IN THE VAL_ERR_ACAUSE VIEW.

CH_ERR_TOOLS

THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE, THE
CHANGE, AND EFF_ADA MUST EQUAL 'Y".

THE CODE FOR THE CAUSE OF AN ERROR INVOLVING ADA (ERR_ACAUSE) MUST EX-

TYPE OF CHANGE (CH_TYPE) IN THE CHANGE TABLE MUST EQUAL 'ERRCO’ FOR THAT

THE CODE FOR ADA TOOLS AIDING IN THE DETECTION OR CORRECTION OF AN ER-
ROR (ERR_TOOLS) MUST EXIST IN THE VAL_ERR_TOOLS VIEW.

COMPUTER

THE COMPUTER NAME (CPU_NAME) MUST BE UNIQUE WITHIN THIS TABLE.

COM_PURPOSE

THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.

THE COMPONENT PURPOSE (PURPOSE) MUST EXIST IN VAL_COM_PURPOSE VIEW.

COM_SOURCE THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.
THE PROGRAMMER D (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.
THE COF NUMBER (FORM_NO) MUST BE UNIQUE WITHIN THIS TABLE.
THE FORM TYPE (FORM_TYPE) MUST EQUAL 'COF".
100044371 4-65

Table 4-3. Constraints on Database Tables (2 of 6)

Tabile Constraint
COM_SOURCE THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.
(CONT'D)
zlbgv ORIGIN OF A COMPONENT CODE (ORI_TYPE) MUST EXIST IN THE VAL_ORI_TYPE
THE COMPONENT TYPE CODE (COM_TYPE) MUST EXIST IN THE VAL_COM_TYPE VIEW.
COM_STAT THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.
CRF_TEMP_ THE SUBSYSTEM PREFIX (SUB_PRE) MUST EXIST IN THE PROJ_SUB TABLE.
CHANGE_COM
THE COMPONENT NAME (COM_NAME) MUST EXIST IN THE V_PROJ_COM VIEW.
THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE V_PROJ_COM VIEW.
DSF_MEASURE THE D_ID MUST EXIST IN THE PROJ_DSF TABLE.
THE DSF STATUS CODE (STATUS_CODE) MUST EXIST IN THE VAL_DSF_STATUS VIEW.
u—gv DSF MEASURE CODE (MEASURE_CODE) MUST EXIST IN THE VAL_DSF_MEASURE
DSF_TARGET THE D_ID MUST EXIST IN THE PROJ_DSF TABLE.
THE DSF STATUS CODE (STATUS_CODE) MUST EXIST IN THE VAL_DSF_STATUS VIEW.
THE DSF TARGET CODE (TARGET_CODE) MUST EXIST IN THE VAL_DSF TARGET VIEW.
EFF_ACT THE EFF_ID MUST EXIST IN THE EFF_SUB (AS PS_ID) OR IN THE EFF_PROJ (AS P_ID)
TABLE.
THE ACTIVITY CODE (ACTIVITY) MUST EXIST IN THE VAL_ACTIVITY VIEW.
EFF_FORM THE P_ID MUST EXIST IN THE EFF_PROJ TABLE.
THE FORM TYPE (FORM_TYPE) MUST BE 'CLPRF’, 'PRF’, OR 'SPF".
THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.
EFF_PROJ THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.
THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.
THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.
THE P_ID MUST BE UNIQUE WITHIN THIS TABLE.
EFF_SUB THE P_iD MUST EXIST IN THE EFF_PROJ TABLE.
THE SUBSYSTEM PREFIX (SUB_PRE) MUST EXIST IN THE PROJ_SUB TABLE.
THE PS_ID MUST BE UNIQUE WITHIN THIS TABLE.
gﬂu%iﬁrs_ THE REPORT SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN THE TEMP_SCRIPT TABLE.

THE DATE (SAT_DAY) MUST BE A VALID SATURDAY DATE.

MAINT_ACT_HRS

THE MAINT_I{D MUST BE IN THE MAINT_PROJ TABLE.

THE MAINTENANCE ACTIVITY CODE (MAINT_ACT) MUST EXIST IN THE VAL_MAINT_ACT
VIEW.

THE COMBINATION OF THE MAINT_ID AND MAINT_ACT MUST BE UNIQUE.

MAINT_CHANGE

THE MAINTENANCE CHANGE NUMBER (MAINT_CH_NO) MUST BE UNIQUE WITHIN THIS
TABLE.

100044370

4-66

Table 4-3. Constraints on Database Tables (3 of 6)

Table

Constraint

MAINT_CHANGE
(CONTD)

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

THE FORM TYPE (FORM_TYPE) MUST BE '"MCRF'.

THE TYPE OF CHANGE (MAINT_CH_TYPE) MUST EXIST IN THE VAL_MAINT_CH_TYPE
VIEW.

THE CAUSE OF CHANGE (CH_CAUSE) MUST EXIST IN THE VAL_CH_TYPE VIEW.

THE EFFORT TO ISOLATE CHANGES CODE (MAINT_ISO_CH) MUST EXIST IN THE
VAL_MAINT_ISO_CH.

THE EFFORT TO IMPLEMENT CHANGES CODE (MAINT_COM_CH) MUST EXIST IN THE
VAL_MAINT_COM_CH VIEW.

THE CHARACTERISTIC OF CHANGE (CH_CLASS) MUST EXIST IN THE VAL_CH_CLASS
VIEW.

MAINT_CH_
OBJECTS

THE MAINTENANCE CHANGE NUMBER (MAINT_CH_NO) MUST EXIST IN THE
MAINT_CHANGE TABLE.

THE CHANGE OBJECTS (CH_OBJECT) MUST EXIST IN THE VAL_CH_OBJECT VIEW.

MAINT_CLASS_HRS

THE MAINT_ID MUST BE IN THE MAINT_PROJ TABLE.

THE CLASS OF MAINTENANCE (MAINT_CLASS) MUST EXIST IN THE VAL_MAINT_CLASS
VIEW.

THE COMBINATION OF THE MAINT_ID AND MAINT_CLASS MUST BE UNIQUE.

MAINT_PROJ

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.

THE PROGRAMMER ID (PROG_|D) MUST EXIST IN THE PERSONNEL TABLE.

THE MAINT_ID MUST BE UNIQUE WITHIN THIS TABLE.

THE FORM TYPE (FORM_TYPE) MUST BE 'WMEF'.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

PC_SEQNO

THE TABLE NAME (TABLE_NAME) MUST EXIST IN THE DATABASE.

THE FIELD NAME (FIELD_NAME) MUST EXIST IN THAT PARTICULAR TABLE.

PERM_SCRIPT

THE ORACLE USER ID (ORA_USER) MUST EXIST IN THE USER_CLASS TABLE.

THE SCRIPT NUMBER (SCRIPT_NO) MUST BE UNIQUE WITHIN THIS TABLE.

THE OUTPUT DESTINATION (OUT_ROUTING) MUST BE 'P’ FOR PRINTER OR ‘F" FOR
FILE.

THE OUTPUT FILE NAME (OUT_FILE) MUST BE ENTERED IF OUT_ROUTING EQUALS 'F".

PERSONNEL

THE ABBREVIATED NAME USED ON FORMS (FORM_NAME) MUST BE UNIQUE WITHIN
THIS TABLE.

THE PROG_ID MUST BE UNIQUE WITHIN THIS TABLE.

PROJECT

THE PROJECT NAME {PROJ_NAME) MUST BE UNIQUE WITHIN THIS TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST BE UNIQUE WITHIN THIS TABLE.

10004437L

4-67

Table 4-3. Constraints on Database Tables (4 of 6)

Table

Constraint

PROJ_CPU_ STAT

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE COMPUTER NAME (CPU_NAME) MUST EXIST IN THE COMPUTER TABLE.

PROJ_DSF

PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

THE FORM TYPE (FORM_TYPE) MUST BE 'DSF..

THE D_ID MUST BE UNIQUE WITHIN THIS TABLE.

PROJ_EST

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

PROJ_EST_ PHASE

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE PHASE CODE (PHASE_CO) MUST EXIST IN THE VAL_PHASE VIEW.

THE PHASE START DATE {START_DATE) AND END DATE (END_DATE) MUST BE VALID
SATURDAY DATES.

PROJ_FORM

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE FORM NUMBER (FORM_NO) MUST BE UNIQUE WITHIN THIS TABLE FOR A PARTIC-
ULAR FORM TYPE.

THE FORM TYPE (FORM_TYPE) MUST BE ‘PCSF', 'PEF, ‘SEF’, 'SPF.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

PROJ_GRH

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.

PROJ_ MESSAGES

THE S_ID MUST EXIST IN THE PROJ_NOTES TABLE.

PROJ_NOTES

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE MESSAGE TYPE (NOTE_TYPE) MUST EXIST IN THE VAL_NOTE_TYPE VIEW.

THE S_ID MUST BE UNIQUE WITHIN THIS TABLE.

PROJ_PROD

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE A VALID FRIDAY DATE.

THE COMPUTER NAME (RES_NAME) MUST EXIST IN THE COMPUTER TABLE.

PROJ_SEF

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBJECTIVE EVALUATION MEASUREMENT (MEAS_TYPE) MUST EXIST IN THE
VAL_MEAS_TYPE VIEW.

PROJ_SEF_SEC

THE SUBJECTIVE EVALUATION MEASUREMENT (MEAS_TYPE) AND THE PROJECT
NUMBER (PROJ_NO) MUST EXIST IN THE PROJ_SEF TABLE.

THE SECONDARY-LEVEL INFORMATION MEASUREMENT CODES (SECOND_L) MUST
EXIST IN THE VAL_SECOND_L VIEW.

PROJ_STAT

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

PROJ_SUB

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBSYSTEM PREFIX (SUB_PRE) MUST BE UNIQUE WITHIN THIS TABLE FOR A
PARTICULAR PROJ_NO.

10004437L

4-68

Table 4-3. Constraints on Database Tables (5 of 6)

Table Constraint
PROJ_SUB THE SUBSYSTEM ID (SUBSY_ID) MUST BE UNIQUE WITHIN THIS TABLE.
(CONT'D) :

SCRIPT_ PROJECTS

THE SCRIPT NUMBER (SCRIPT_NO) AND THE REPORT SEQUENCE NUMBER (RE-
PORT_SEQ) MUST EXIST IN THE SCRIPT_REPORT TABLE.

THE PROJECT NAME (PROJ_NAME) MUST EXIST IN THE PROJECT TABLE.

SCRIPT_ REPORT

THE SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN EITHER THE PERM_SCRIPT OR
THE TEMP_SCRIPT TABLE.

THE REPORT CODE (REPORT_CODE) MUST EXIST IN THE VAL_REPORT_CODE TABLE.

THE REPORT TYPE CODE (REPORT_TYPE) MUST BE 'S’ FOR SINGLE PROJECT RE-
PORT, ‘M’ FOR MULTIPLE-PROJECT REPORT, OR 'O’ FOR MISCELLANEOUS REPCRT.

IF REPORT_TYPE EQUALS 'S', THE VALID VALUES FOR REPORT_TYPE_SELECTION
ARE VALID PROJECT NAMES (PROJ_NAME) IN THE PROJECT TABLE. IF REPORT_TYPE
EQUALS ‘M", THE VALID VALUES FOR REPORT_TYPE_SELECTION ARE ‘ALL', 'ACT_DEV’,
‘ACT_MAINT", INACTIVE', AND ‘LIST". IF REPORT_TYPE EQUALS 'O’, THE REPORT TYPE
SELECTION IS NULL.

SEQNO

THE TABLE NAME (TABLE_NAME) MUST EXIST IN THE DATABASE.

THE FIELD NAME (FIELD_NAME) MUST EXIST IN THAT PRTICULAR TABLE.

SPECIAL_ACT

THE EFF_ID MUST EXIST IN EITHER THE EFF_PROJ (AS P_ID) OR THE EFF_SUB (AS
PS_iD) TABLE.

THE SPECIAL ACTIVITY CODE (SP_ACTIVITY) MUST EXIST IN THE VAL_SP_ACTIVITY
VIEW.

SUBSYSTEM

THE SUBSYSTEM ID (SUBSY_ID) MUST EXIST IN THE PROJ_SUB TABLE.

THE SUBSYSTEM FUNCTION (FUNCTION) MUST EXIST IN THE VAL_S_FUNCTION VIEW.

SUB_COM

THE SUBSYSTEM ID (SUBSY_ID) MUST EXIST IN THE PROJ_SUB TABLE.

THE COMPONENT NAME (COM_NAME) MUST BE UNIQUE WITHIN THIS TABLE FOR A
PARTICULAR SUBSYSTEM.

THE COMPONENT NUMBER (COM_NO) MUST BE UNIQUE WITHIN THIS TABLE.

TABLE_ PRIVILEGE

THE TABLE NAME (TABLE_NAME) MUST EXIST IN THE DATABASE.

THE USER CLASS (USER_CLASS) MUST EXIST IN THE USER_CLASS TABLE.

TEMP_ACTIVITY

THE SCRIPT NUMBER (SCRIPT_NO) AND SATURDAY DATE (SAT_DAY) MUST EXIST IN
THE GENERATE_SAT_DAY TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

TEMP_FORMCT

THE SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN THE TEMP_SCRIPT TABLE.

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

TEMP_MANHRS

THE SCRIPT NUMBER (SCRIPT_NO) AND SATURDAY DATE (SAT_DAY) MUST EXIST IN
THE GENERATE_SAT_DAY TABLE.

THE PROGRAMMER D (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE P_ID MUST EXIST IN THE EFF_PROJ TABLE.

100044371

4-69

Table 4-3. Constraints on Database Tables (6 of 6)

Table Constraint
TEMP SCRIPT THE SCRIPT NUMBER (SCRIPT_NO) MUST BE UNIQUE WITHIN THIS TABLE.

THE ORACLE USER ID (ORA_USER) MUST EXIST IN THE USER_CLASS TABLE.

THE OUTPUT DESTINATION (QUT_ROUTING) MUST BE 'P’ FOR PRINTER OR ‘F' FOR
FILE.

THE OUTPUT FILE NAME (OUT_FILE) MUST BE ENTERED IF OUT_ROUTING EQUALS 'F..
TEMP_SERVHRS THE SCRIPT_NO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY TABLE.

THE PROGRAMMER ID {(PROG ID) MUST EXIST IN THE PERSONNEL TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE

THE P_ID MUST EXIST IN THE EFF_PROJ TABLE.

USER_CLASS THE ORACLE USER 1D (ORA_USER_ID) MUST BE A VALID ORACLE USER ACCOUNT
NAME.
THE CLASS OF USER (USER_CLASS) MUST EXIST IN THE USER_CLASS_ACCESS
TABLE.

Example 1

This example retrieves all the subsystem prefixes of a particular project. This access path is
shown in Table 44 under target table PROJ_SUB and target column SUB_PRE and is as
follows:

[PROJ_NAME] —> PROJECT

l [PROJ_NO]
PROJ_SUB

!

[SUB_PRE]

The first line in the access path shows that PROJ_NAME is the field whose value must be
specified by the user to identify which project’s data are to be retrieved. The down arrow
between PROJECT and PROJ SUB means that the two tables are joined together by a
common field, which is listed next to the arrow (PROJ_NO, in this case). The down arrow
under PROJ SUB points to the target column SUB_PRE of table PROJ_SUB, where all the
subsystem prefixes are stored.

SQL statement

SQL> SELECT SUB_PRE FROM PROJ_SUB, PROJECT
2 WHERE PROJ_SUB. PROJ_NO = PROJECT. PROJ_NO
3 AND PROJ_NAME = <user-supplied project name>;

100044371 4-70

Example 2

This example retrieves the date on which a component was entered into the project’s con-
trolled library. The access path for this example is shown in Table 4-4 under target table
COM_SOURCE and target column CREATE_DATE and is as follows:

[PROJ_NAME] —> PROJECT

l [PROJ_NO]
[SUB_PRE] —> PROJ_SUB
l [SUBSY_ID]
[COM_NAME] —» SUB_COM
l [COM_NO]
COM_SOURCE

!

[CREATE_DATE]

PROJ_NAME, SUB_PRE, and COM_NAME are the fields whose values must be provided
by the user. Tables PROJECT and PROJ_SUB are joined on PROJ_NO; PROJ_SUB and
SUB_COM are joined on SUBSY_ID; and SUB_COM and COM_SOURCE are joined on
COM_NO. The result is field CREATE_DATE of the COM_SOURCE table.

SQL statement

SQL> SELECT CREATE_DATE
FROM COM_SOURCE, SUB_COM, PROJ_SUB, PROJECT
WHERE COM_SOURCE. COM_NO = SUB_COM. COM_NO
AND SUB_COM.SUBSYS_ID = PROJ_SUB.SUBSY_ID

PROJ_SUB. PROJ_NO = PROJECT. PROJ_NO

AND PROJ_NAME = <user-supplied project name>

AND SUB_PRE = <user-supplied subsystem prefix>

AND COM_NAME = <user-supplied component name>;

00~ N AW
w)

100044371 4-71

Example 3

This example uses a predefined view as an alternative to the method presented in example 2
to get the same data (i.e., the date on which a component was entered into the controlled
library). The access path for using the view V_PROJ_COM to retrieve this data item is as
follows:

COM_NAME

!

[PROJ_NAME] —>» V_PROJ_COM <«— ([SUB_PRE]
l [COM_NO]
COM_SOURCE

!

[CREATE_DATE]

In this example, view V_PROJ_COM replaces tables PROJECT, PROJ_SUB, and
SUB_COM used in the previous example. The view already joins these tables. The result is
field CREATE_DATE of the COM_SQOURCE table.

SQL statement

SQL> SELECT CREATE_DATE

FROM V_PROJ_COM, COM_SOURCE

WHERE V_PROJ_COM.COM_NO = COM_SOURCE.COM_NO
AND COM_NAME = <user-supplied component name>

AND SUB_PRE = <user-supplied subsystem prefix>

AND PROJ_NAME = <user-supplied project name>;

The SQL statements in these examples are included for completeness. For a more detailed
introduction to formulating SQL queries, see Section 5.3.

A s W

100044371 4-72

Table 4-4. SEL Database Access Paths (1 of 28)

Ref. ID

Target
Table

Target
Column

Access
Information

Access Path

P63, D82

CHANGE

CHANGE_NO

PROJECT NAME

[PROJ_NAME] —» V_PROJ_COM
l [COM_NO]
CHANGE_COM

l [CHANGE_NO]}

CHANGE —» [CHANGE_NO]

P76, D67

CHANGE

CH_TYPE

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO] =» CHANGE

| |

[CH_TYPEJ'CODED FIELD

P73, D&4

CHANGE

DATA_COMP

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO] =» CHANGE

!

[DATE_COMP)

P72, D63

CHANGE

DATE_DETER

CHANGE NUM- -
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO] —» CHANGE

[DATE_DETER]

P69, D76

CHANGE

EFF_ADA

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO] —%» CHANGE

[EFF_ADA]

P67, D66

CHANGE

EFF_COM_CH

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO] —» CHANGE

[EFF_COM_CH|*CODED FIELD]

Pe6, D65

CHANGE

EFF_ISO_CH

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO] —» CHANGE

[EFF_ISO_CH]*CODED FIELD]

10004437L

4-73

Table 4-4. SEL Database Access Paths (2 of 28)

Ret. ID

Target
Table

Target
Column

Access
Information

Access Path

Pés, D68

CHANGE

EFF_ONE

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO]—>»

CHANGE

|

[EFF_ONE]

P70, De9

CHANGE

EFF_OTHER

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO|»

CHANGE

l

[EFF_OTHER]

P71, D70

CHANGE

EFF_PARPA

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO]»

CHANGE

l

[EFF_PARPA]

P74

CHANGE

NUM_COM_
CH

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO]->»

CHANGE

|

[NUM_COM_CH]

P75

CHANGE

NUM_COM_
EX

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO|>»

CHANGE

[NUM_COM_EX]

Pes, D2

CHANGE

SUB_DATE

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO] >

CHANGE

[SUB_DATE]

Pss, D77

CH_
ADAFEAT

ADA_
FEATURE

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO]—»

CH_ADAFEAT

|

[ADA_FEATURE]"CODED FIELD

10004437L

4-74

Table 4-4. SEL Database Access Paths (3 of 28)

Ret. 1D

Target
Table

Target
Column

Access
Information

Access Path

Pss, D80

CH_ERR_
ARES

ERR_ARES

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NOJ]-» CH_ERR_ARES

[ERR_ARES]"CODED FIELD

P83, D79

CH_ERR_
GEN

ERR_ACAUSE

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO]-» CH_ERR_GEN

[ERR_ACAUSE]"CODED FIELD

P82, D78

CH_ERR_
GEN

ERR_ADOC

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NOJ-» CH_ERR_GEN

[ERR_ADOC]

P78, D72

CH_ERR_
GEN

ERR_CLASS

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE _NO|-» CH_ERR_GEN

[ERR_CLASS]*CODED FIELD

P79, D74

CH_ERR_
GEN

ERR_COMIS

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO]-» CH_ERR_GEN

[ERR_COMIS]

P80, D73

CH_ERR_
GEN

ERR_OMIS

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NO|=» CH_ERR_GEN

[ERR_OMIS]

P77, D71

CH_ERR_
GEN

ERR_
SOURCE

CHANGE NUM-
BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR CHANGE
NUMBER

[CHANGE_NOJ-» CH_ERR_GEN

[ERR_SOURCE]*CODED FIELD

100044371

Table 4-4. SEL Database Access Paths (4 of 28)

Target Target Access
Ref. ID Table Column Information _ Access Path
P81,075 |[CH_ERR_ [ERR_TYPO [CHANGENUM- |[CHANGE_NO]—» CH_ERR_GEN
GEN BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC- [ERR_TYPO]
ULAR CHANGE
NUMBER
P87,D81 |CH_ERR_ |ERR_TOOLS |[CHANGENUM- |[CHANGE_NOJ¥ CH_ERR_TOOLS
TOOLS BER; SEE P63
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC- [ERR_TOOLS|"CODED FIELD
ULAR CHANGE
NUMBER
M4 COMPU- |[CPU_NAME |NONE COMPUTER =¥ [CPU_NAME]
TER
M5 COMPU- |C_FULL_ NONE [CPU_NAME}» COMPUTER—® [C_FULL_NAME]
TER NAME
P59, DS8 | COM_ PURPOSE PROJECT NAME, |[PROJ_NAME]—» PROJECT
PURPOSE SUBSYSTEM
PREFIX, AND l [PROJ_NO]
COMPONENT
NAME [SUB_PRE] —¥» PROJ_SUB
(SUBSY_ID]
[COM_NAME] —» SUB_COM
l [COM_NO]
COM_PURPOSE
[PURPOSE]*CODED FIELD
P58, D57 |COM_ COM_TYPE |PROJECT NAME, |[PROJ_NAME] —» PROJECT
SOURCE SUBSYSTEM
PREFIX, AND [PROJ_NO]
COMPONENT
NAME [SUB_PRE] —» PROJ_SUB
(SUBSY_ID]
[COM_NAME] —» SUB_COM
l [COM_NOJ
COM_SOURCE
[COM_TYPEJ*CODED FIELD
10004437L 4-76

Table 4-4. SEL Database Access Paths (5 of 28)

Target Target Access
Ref. ID Table Column Information Access Path
P53, D54 | COM_ CREATE_ PROJECT NAME, |[PROJ_NAME] —%» PROJECT
SOURCE | DATE SUBSYSTEM
PREFIX, AND l [PROJ_NO]
COMPONENT
NAME [SUB_PRE] —» PROJ_SUB
[SUBSY_ID]
[COM_NAME] —¥» SUB_COM
[COM_NO]
COM_SOURCE
[CREATE_DATE]
ps7, DS5 COM_ DIFFICULTY |PROJECT NAME, |[PROJ_NAME] —» PROJECT
SOURCE SUBSYSTEM
PREFIX, AND l [PROJ_NO]
COMPONENT
NAME [SUB_PRE] —¥» PROJ_SUB
l [SUBSY_ID]
[COM_NAME] —» SUB_COM
l [COM_NO]
COM_SOURCE
[DIFFICULTY]
D59 COM_ FORM_NO PROJECT NAME, | [PROJ_NAME] —» PROJECT
SOURCE SUBSYSTEM
PREFIX, AND l [PROJ_NO]
COMPONENT
NAME [SUB_PRE] —» PROJ_SUB
[SUBSY_ID]
[COM_NAME] —» SUB_COM
(COM_NO]
COM_SOURCE
[FORM_NO]
10004437L 4-77

Table 4-4. SEL Database Access Paths (6 of 28)

Target Target Access
Ret. ID Table Column Information Access Path
Pse, D56 [COM_ ORI_TYPE PROJECT NAME, |[PROJ_NAME] —» PROJECT
SOURCE SUBSYSTEM
PREFIX, AND [PROJ_NO]
COMPONENT
NAME [SUB_PRE] —>» PROJ_SUB
[SUBSY_ID]
[COM_NAME] —» SUB_COM
l [COM_NO]
COM_SOURCE
[ORI_TYPE]"CODED FIELD
P54, D2 COM_ SUB_DATE PROJECT NAME, | [PROJ_NAME] = PROJECT
SOURCE SUBSYSTEM '
PREFIX, AND l (PROJ_NOJ
COMPONENT
NAME [SUB_PRE] —» PROJ_SUB
l {SUBSY_ID]
[COM_NAME] ~—» SuUB_COM
l [COM_NO]
COM_SOURCE
[SUB_DATE]
P156 COM_ C_C_LINE PROJECT NAME | [PROJ_NAME}-» V_PROJ_COM<~ [COM_NAME]
STAT AND COM-
PONENT NAME {COM_NO]
COM_STAT
C_C_LINE
P154 COM_ C_EXE_S PROJECT NAME | [PROJ_NAME]=> V_PROJ_COM<— [COM_NAME]
STAT AND COM-
PONENT NAME {COM_NO]
COM_STAT
[C_EXE_S]
10004437L 4-78

Table 4-4. SEL Database Access Paths (7 of 28)

Target Target Access
Ref. ID Table Column Information Access Path
P155 COM_ C_LINE PROJECT NAME | [PROJ_NAME]—» V_PROJ_COM<~ [COM_NAME]
STAT AND COM-
PONENT NAME [COM_NO]
COM_STAT
[C_LINE]
P221 COM_ C_STMT PROJECT NAME | [PROJ_NAME]-» V_PROJ_COM<— [COM_NAME]
STAT AND COM-
PONENT NAME {COM_NQ]
COM_STAT
[C_STMT]
p222 COM_ FiNAL_ PROJECT NAME | [PROJ_NAME]->» V_PROJ_COM«— [COM_NAME]
STAT ORIGIN_CAT | AND COM-
PONENT NAME [COM_NOJ
COM_STAT
{FINAL_ORIGIN_CAT]
P196, D181, | DSF_ MEASURE_ | PROJECT NAME | [PROJ_NAME] —» PROJECT
P198, D183, | MEASURE | VALUE AND MEASURE- (PROJ_NO]
P200-P202, MENT CODE -
D185-D188,
P204-P208, PROJ_DSF
D189-0190,
P208, D193, (D_ID]
P210, D195,
p212, D197 [MEASURE_CODE] —» DSF_MEASURE
[MEASURE_VALUE]
WHERE
MEASURE_CODE FOR P196, D181 = MODDESIGN
MEASURE_CODE FOR P198, D183 = MODCODE
MEASURE_CODE FOR P200, D185'= SYSTSTONE
MEASURE_CODE FOR P201,D186 = SYSTSTPASS
MEASURE_CODE FOR P202 = SYSTSTRUN
MEASURE_CODE FCR P204, D189 = ACCTSTONE
MEASURE_CODE FOR P205, D190 = ACCTSTPASS
MEASURE_CODE FOR P206 = ACCTSTRUN
MEASURE_CODE FOR P208, D193 = DISCRES
MEASURE_CODE FOR P210, D195 = SPECMODIMP
MEASURE_CODE FOR P212, D19 = QUESTANS
100044371 4-79

Table 4-4. SEL Database Access Paths (8 of 28)

Target Target Access
Ref. ID Table Column Information Access Path
P1gS, D180, | DSF_ TARGET_ PROJECT NAME |[{PROJ_NAME] —» PROJECT
P197, D182, | TARGET | VALUE AND [PROJ_NO]
P199. D184, TARGET_CODE -
P203, D188, PROJ_DSF
P207, D192, T
P209, D194, [D_ID]
196
Pan.D [TARGET_CODE] —%» DSF_TARGET
[TARGET_VALUE]
WHERE
TARGET_CODE FOR P195, D180 = TOTDESIGN
TARGET_CODE FOR P197, D182 = TOTCODE
TARGET_CODE FOR P199, D184 = TOTSYSTST
TARGET_CODE FOR P203, D188 = TOTAGCTST
TARGET_CODE FOR P207, D192 = TOTDISCREP
TARGET_CODE FOR P209, D194 = SPECMODREC
TARGET_CODE FOR P211, D196 = QUESTSUB
P25-P34, |EFF_ACT |ACT_HR PROJECT NAME, |[PROJ_NAME] —» PROJECT
D23-D32, (FROMPRF | PROGRAMMER
P157-P166, NAME, WEEK
D199-D208 ORCLPRF) | ENDING DATE, [FORM_NAME] [PROJ_NO]
SUBSYSTEM
PREFIX (OPTION-
AL}, AND ACTIV- PERSONNEL
ITY ,L
(PROG_ID] —» EFF_PROJ<— [SUB_DATE]
[P_ID]
[P_ID] [EFF_SUB<— [SUB_PRE]
[ACTIVITY]> EFF_ACT«——, [PS_iD]
[ACT_HR]
WHERE (FOR PRF)
ACTIVITY FOR P25, D2 = PREDES
ACTIVITY FOR P26, D24 = CREDES
ACTIVITY FOR P27, D25 = RDREVDES
ACTIVITY FOR P28, D26 = WRCODE
ACTIVITY FOR P29, D27 = RDREVCOD
ACTIVITY FOR P30, D28 = TSTCODUN
ACTIVITY FOR P31, D29 = DEBUG
ACTIVITY FOR P32, D30 = INTTEST
ACTIVITY FOR P33, D31 = ACCTEST
ACTIVITY FOR P34, D32 = OTHER
100044371 4-80

Table 4-4. SEL Database Access Paths (9 of 28)

Target Target Access :
Ret. ID Table Column Information Access Path
P25-P34, |EFF_ACT |ACT_HR PROJECT NAME, (FOR CLPRF)
D23-D32, (FROM PRF PROGRAMMER ACTIVITY FOR P157, D199 = CLPREDES
P157-P1686, OR CLPRF) NAME, WEEK ACTIVITY FOR P158, D200 = CLPRETEST
D199-D208 ENDING DATE, ACTIVITY FOR P159, D201 = CLCREDES
{Cont'd) SUBSYSTEM ACTIVITY FOR P160, D202 = CLVEREVDES
PREFIX (OPTION- | AGTIVITY FOR P161, D203 = CLWRCODE
AL), AND ACTIV- | ACTIVITY FOR P162, D204 = CLRDREVCOD
104 ACTIVITY FOR P163, D205 = CLINDTEST
ACTIVITY FOR P164, D206 = CLRESPSFR
ACTIVITY FOR P165,D20 = CLACCTEST
ACTIVITY FOR P168, D208 = CLOTHER
P157-P166, | EFF_ACT |ACT_HR CLEANROOM [CLEANROOM PROJ_NAME]—» PROJECT
D199-D208 (FROM igg‘é%iv:ﬁf' {FORM_NAME] {PROJ_NO]
CLPRF, NAME, AND
MAPPED TO J ¢
PRE ACTIVI. | WEEK ENDING PERSONNEL
TIES) DATE i
*CLEANROOM
ACTIVITIES ARE [PROG_ID] —» EFF_PROJ<— [SUB_DATE]
CONVERTED TO l {P_ID]
STANDARD ACTI-
VITIES BY USING [ACTIVITY] =» V_CLEANROOM_ACT
V_CLEANROOM
ACT VL
JACT_HR]
WHERE
ACTIVITY FOR P25, D23 = PREDES
ACTIVITY FOR P26, D24 = CREDES
ACTIVITY FOR P27, D25 = RDREVCOD
ACTIVITY FOR P28, D26 = WRCODE
ACTIVITY FOR P29, D27 = RDREVDES
ACTIVITY FOR P31, D29 = DEBUG
ACTIVITY FOR P32, D30 = INTTEST
ACTIVITY FOR P33, D31 = ACCTEST
ACTIVITY FOR P34, D32 = OTHER
100044371 4-81

Table 4-4. SEL Database Access Paths (10 of 28)

Target Target Access
Reft. ID Table Column Information Access Path
Pag, P40, |EFF_ACT |ACT_HR PROJECT NAME, | [PROJ_NAME] —» PROJECT
P42, P43, PROGRAMMER
D44, D45, (FROM SPF) | AME, AND (FORM_NAME] [PROJ_NOJ
D47, D48 WEEK ENDING vL
DATE
PERSONNEL
[PROG_ID] —» EFF_PROJ <%— [SUB_DATE]
l [P_ID] = [EFF_ID]
[ACTIVITY] = EFF ACT
[ACT_HR]
WHERE
FORM_NAME FOR P39, D44 = TECHPUBS
FORM_NAME FOR P40, D45 = SECRTARY
FORM_NAME FOR P42, D47 = PROGMGMT
FORM_NAME FOR P43, D48 = OTHSUPP
AND
ACTIVITY FOR P39, D44, L
P40, D45, _
P4z D47, | = SUPPORT
P43,D48 |
D37,D49, |EFF_ FORM_NO PROJECT NAME | [PROJ_NAME] —» PROJECT
D210 FORM AND FORM TYPE (PROJ_NO]
EFF_PROJ
{P_ID]
[FORM_TYPE] ——%» EFF_FORM
[FORM_NO]
WHERE
FORM_TYPE FOR D37 = PRF
FORM_TYPE FOR D49 = SPF
FORM_TYPE FOR D210 = CLPRF
P23, D22 EFF_ SUB_DATE PROJECT NAME | [PROJ_NAME] —» PROJECT
PROJ [PROJ_NO]
EFF_PROJ
[SUB_DATE]
100044371 4-82

Table 4-4. SEL Database Access Paths (11 of 28)

Target Target Access
Ref. ID Table Column Information Access Path
P172-P177, |MAINT_ [ACT_HR PROJECT NAME, | [PROJ_NAME] —» PROJECT
D155-D160 | ACT_HRS PROGRAMMER
NAME, WEEK [PROJ_NOJ
ENDING DATE, [FORM_NAME]
AND MAINTE- -
NANCE ACTIVITY y
PERSONNEL
$ v
[PROG_ID] —» MAINT_PROJ <— [SUB_DATE]
l [MAINT_NOJ
[MAINT_ACT] —» MAINT_ACT_HRS
[ACT_HR]
WHERE
MAINT_ACT FOR P172, D155 = ISOLATION
MAINT_ACT FOR P173, D156 = REDESIGN
MAINT_ACT FOR P174, D157 = iMPLEMENT
MAINT_ACT FOR P175, D158 = UNSYSTEST
MAINT_ACT FOR D176, D159 = ACCBENTEST
MAINT_ACT FOR P177, D160 = OTHER
P180, D164 |MAINT_ |CH_CAUSE |MAINTENANCE | [MAINT_CH_NO] — MAINT_CHANGE
CHANGE CHANGE NUM-
BER; SEE D178
FOR THE AC-
CESS PATH THAT [CH_CAUSE]"CODED FIELD
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER
P184, D168 |MAINT_ |CH_CLASS MAINTENANCE | [MAINT_CH_NO}] — MAINT_CHANGE
CHANGE CHANGE NUM-
BER; SEE D178
FOR THE AC-
CESS PATH THAT [CH_CLASS]"CODED FIELD
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER
P188, D172 |MAINT_ |COMP_ADD [MAINTENANCE |[MAINT_CH_NO] —» MAINT_CHANGE
CHANGE CHANGE NUM-
BER; SEE D178
FOR THE AC-
CESS PATH THAT [COMP_ADD]
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER
10004437L 4-83

Table 4-4. SEL Database Access Paths (12 of 28)

Target
Table

Target

Ref. ID Column

Access
Information

Access Path

MAINT

P191, D175 "~
CHANGE

COMP_ADD_
NEW

MAINTENANCE
CHANGE NUM-
BER; SEED178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO] — MAINT _CHANGE

[COMP_ADD_NEW]

MAINT

P193, D177 A
CHANGE

COMP_ADD_
REMOD

MAINTENANCE
CHANGE NUM-
BER; SEE D178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO] —> MAINT_CHANGE

l

([COMP_ADD_REMOD]

MAINT

P192, D176 -~
CHANGE

COMP_ADD_
REUSE

MAINTENANCE
CHANGE NUM-
BER; SEE D178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO] —3 MAINT_CHANGE

[COMP_ADD_REUSE]

P189, D173 | MAINT_

CHANGE

COMP_CH

MAINTENANCE
CHANGE NUM-
BER; SEED178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO] — MAINT_CHANGE

[COMP_CH]

P190, D174 | MAINT_

CHANGE

COMP_DEL

MAINTENANCE
CHANGE NUM-
BER; SEED178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO| —3 MAINT_CHANGE

|

[COMP_DEL]

P185, D169 | MAINT _

CHANGE

EST_LOC_
ADD

MAINTENANCE
CHANGE NUM-
BER; SEE D178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO] —3 MAINT_CHANGE

|

[EST_LOC_ADD]

100044371

4-84

Table 4-4.. SEL Database Access Paths (13 of 28)

Ret. 1D

Target
Table

Target
Column

Access
information

Access Path

P186, D170

MAINT _
CHANGE

EST_LOC_
CH

MAINTENANCE
CHANGE NUM-
BER; SEE D178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO] — MAINT_CHANGE

[EST_LOC_CH]

P187, D171

MAINT _
CHANGE

EST_LOC_
DEL

MAINTENANCE
CHANGE NUM-
BER; SEE D178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO] —% MAINT_CHANGE

[EST_LOC_DEL]}

D178

MAINT _
CHANGE

MAINT_CH_
NO

PROJECT NAME,
PROGRAMMER
NAME, AND SUB-
MISSION DATE

[PROJ_NAME] —%» PROJECT

[FORM_NAME] [PROJ_NO

v

PERSONNEL

v

[PROG_ID] —3» MAINT_CHANGE

[MAINT_CH_NO]

P179, D163

MAINT _
CHANGE

MAINT_CH_
TYPE

MAINTENANCE
CHANGE NUM-
BER; SEED178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO] —» MAINT_CHANGE

[MAINT_CH_TYPE]*CODED FIELD

P182, D166

MAINT_
CHANGE

MAINT_COM_
CH

MAINTENANCE
CHANGE NUM-
BER; SEED178
FOR THE AC-
CESS PATH THAT
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER

[MAINT_CH_NO|] —» MAINT_CHANGE

[MAINT_COM_CH['CODED FIELD

100044371

4-85

- Table 4-4. SEL Database Access Paths (14 of 28)

Target Target Access ,
Ref. ID Table Column Information Access Path
P181,D165 |MAINT | MAINT_ISO_ |[MAINTENANCE |[MAINT_CH_NO]—> MAINT CHANGE
CHANGE {CH CHANGE NUM-
BER; SEE D178
FOR THE AC-
CESS PATH THAT [MAINT_ISO_CH]"CODED FIELD
FINDS A PARTIC-
ULAR MAINTE-
NANCE CHANGE
NUMBER
P183, D167 |MAINT_ | CH_OBJECT |MAINT CHANGE [MAINT_CH_NO]
CH_ NUMBER
OBJECTS
MAINT_CH_OBJECTS
[CH_OBJECT]*CODED FIELD]
P168-P171, |MAINT_ | CLASS_HR PROJECT NAME, | [PROJ_NAME] —9 PROJECT
D151-D154 | CLASS_ PROGRAMMER
HRS NAME, AND [FORM_NAME] [PROJ_NO]
WEEK ENDING 4'
DATE
PERSONNEL
[PROG_ID] —» MAINT_PROJ €— [SUB_DATE]
[MAINT_ID]
[MAINT_CLASS] —p MAINT_CLASS_HRS
[CLASS_HR]
WHERE
MAINT_CLASS FOR P168, D151 = CORRECTION
MAINT_CLASS FOR P169, D152 = ENHANCEMNT
MAINT_CLASS FOR P170, D153 = ADAPTATION
MAINT_CLASS FOR P171, D154 = OTHER
P23, D22 MAINT_ | SUB_DATE PROJECT NAME | [PROJ_NAME] —3» PROJECT
PROJ
Foml_ NAME (PROJ_NO]
PERSONNEL
[PROG_ID] —» MAINT_PROJ
[SUB_DATE]
Mt PERSON- | FORM_NAME | NONE PERSONNEL —» [FORM_NAME]
NEL
M3 PERSON- | DATE_ENTRY | PROGRAMMER | [FORM_NAMER» PERSONNEL [DATE_ENTRY]
NEL NAME
10004437L 4-86

Table 4-4. SEL Database Access Paths (15 of 28)

Target Target Access _
Ref. ID Table Column Information Access Path
P24, D21 | PERSON- [FORM_NAME |PROJECT NAME, |[PROJ_NAME] —» PROJECT
NEL SUBSYSTEM
(FROMCOR) | SHER e AND l [PROJ_NO]
COMPONENT
NAME [SUB_PRE] —» PROJ_SUB
[SUBSY_ID]
[COM_NAME]—» SUB_COM
[COM_NO]
COM_SOURCE
l [PROG_ID]
PERSONNEL
[FORM_NAME]
P24, D21 PERSON- | FORM_NAME | CHANGE NUM- [[CHANGE_NO] —» CHANGE
NEL BER; SEE P63
(FROM CRF) | SR THE AC- L [PROG_ID]
CESS PATH THAT PERSONNEL
FINDS A PARTIC-
ULAR CHANGE VL
NUMBER [FORM_NAME]
P24, D21 PERSON- | FORM_NAME | PROJECT NAME |[PROJ_NAME] —» PROJECT
NEL (FROM DSF) l [PROJ_NO]
PROJ_DSF
i [PROG_ID]
PERSONNEL
[FORM_NAME]
P24, D21 PERSON- | FORM_NAME | PROJECT NAME | [PROJ_NAME] —» PROJECT
NEL (FROM MCRF) i [PROJ_NO]
MAINT_CHANGE
l [PROG_ID]
PERSONNEL
[FORM_NAME]
100044371 4-87

Table 4-4. SEL Database Access Paths (16 of 28)

Target Target Access
Ret. ID Table Column information Access Path
P24, D21 PERSON- | FORM_NAME |PROJECT NAME |[PROJ_NAME] —%» PROJECT
NEL (FROMPRF |AND FORM TYPE [PROJ_NO]
OR CLPRF)
[FORM_TYPE] —» EFF_PROJ
[PROG_ID]
PERSONNEL
[FORM_NAME]
WHERE
FORM_TYPE = PRF OR CLPRF
P24, D21 PERSON- | FORM_NAME |PROJECT NAME | [PROJ_NAME] —» PROJECT
NEL AND FORM TYPE
(FROM SPF) [PROJ_NO]
[FORM_TYPE] —» EFF_PROJ
i [PROG_ID]
PERSONNEL
[FORM_NAME]
WHERE
FORM_TYPE = SPF
NOTE:
FORM_NAME = LIBARIAN, OTHSUPP,
PROGMGMT, SECRTARY,
TECHPUBS
P24, D21 PERSON- | FORM_NAME | PROJECT NAME |[PROJ_NAME] —» PROJECT
NEL (FROM ,L [PROJ_NOJ]
WMEF)
MAINT_PROJ
i (PROG_ID]
PERSONNEL
[FORM_NAME]
M2 PERSON- | FULL_NAME |PROGRAMMER |[FORM_NAME}» PERSONNEL—» [FULL_NAME]
NEL NAME
P3 PROJECT { ACTIVE_ PROJECT NAME | [PROJ_NAME]-» PROJECT
STATUS l
[ACTIVE_STATUS|"CODED FIELD
P1.D1 PROJECT |[PROJ_NAME |NONE PROJECT —3> [PROJ_NAME]
P2,0163 |PROJECT |PROJ_TYPE |PROJECTNAME [[PROJ_NAME]-» PROJECT
[PROJ_TYPEJ'CODED FIELD
10004437L 4-88

Table 4-4. SEL Database Access Paths (17 of 28)

Target Target Access
Ret. ID Table Column Information Access Path
P134, D38 |PROJ_ CPU_NAME | PROJECT NAME | [PROJ_NAME]» PROJECT
CPU_
STAT [PROJ_NOJ
PROJ_CPU_STAT
[CPU_NAME]
P135, D94 | PROJ_ TOTAL_HRS | PROJECT NAME | [PROJ_NAME]-» PROJECT
cPU_
S l [PROJ_NOJ
PROJ_CPU_STAT
[TOTAL_HRS]
P136,D95 |PROJ_ T_RUN PROJECT NAME | [PROJ_NAME]3» PROJECT
cPU_
STAT [PROJ_NO]
PROJ_CPU_STAT
[T_RUN]
P23, D22 |PROJ_ SUB_DATE | PROJECT NAME [[PROJ_NAME]-» PROJECT
OSF [PROJ_NO]
PROJ_DSF
[SUB_DATE]
P21,D12 |PROJ_ MAN_HR PROJECT NAME | [PROJ_NAME]-» PROJECT
EST AND SUBMIS-
SION DATE OF [PROJ_NO]
DESIRED SET OF
DD [SUB_DATE] % PROJ_EST
[MAN_HR]
P20.D11 | PROJ_ PRO_HR PROJECT NAME | [PROJ_NAME]» PROJECT
EST AND SUBMIS-
SION DATE OF l [PROJ_NO]
DESIRED SET OF
D aTEs [SUB_DATE] PR¢1J_EST
[PRO_HR]
P22,D13 |PROJ_ SER_HR PROJECT NAME | [PROJ_NAME]-» PROJECT
EST AND SUBMIS-
SION DATE OF l [PROJ_NO]
DESIRED SET OF
A [SUB_DATE] PROlJ_EST
[SER_HR]
10004437L 4-89

Table 4-4. SEL Database Access Paths (18 of 28)

Target Target Access ,
Ret. ID Table Column Information Access Path
P13,D2 |PROJ_ |SUB_DATE |PROJECT NAME |[PROJ_NAME] - PROJECT
EST l [PROJ_NO]
PROJ_EST
[SUB_DATE]
P15,015 |PROJ_ | T.COM PROJECT NAME | [PROJ_NAME] -» PROJECT
EST AND SUBMIS-
SION DATE OF [PROJ_NOJ
DESIRED SET OF
DESIRED S| [SUB_DATE] » PRT_EST
[T_CoMm]|
P16, D16 |PROJ_ | T_LINE PROJECT NAME | [PROJ_NAME] » PROJECT
EST AND SUBMIS-
SION DATE OF | ProwNo
DESIRED SET OF
DESIRED S| [SUB_DATE] » PﬂolJ_Esr
[T_LINE]
P18.D18 |PROJ_ | T_MOD_LINE |PRGJECT NAME | [PROJ_NAME] 3 PROJECT
EST AND SUBMIS-
SION DATE OF l, [PROJ_NOJ
DESIRED SET OF
DESIRED [SUB_DATE] » PnciJ_EST
[T_MOD_LINE]
P19,D17 |PROJ_ | T_NEW_LINE | PROJECT NAME | [PROJ_NAME] > PROJECT
EST AND SUBMIS-
SION DATE OF l [PROJ_NO]
DESIRED SET OF
DESIRED S1 [SUB_DATE] » PRciJ_EST
(T_NEW_LINE]
P17.D19 |PROJ_ | T_OLD_LINE |PROJECT NAME |[PROJ_NAME] » PROJECT
EST AND SUBMIS-
SION DATE OF (PROJ_NO]
DESIRED SET OF
DESIRED S [SUB_DATE] > PR(IJ_EST
[T_OLD_LINE]
P14,D14 |PROJ_ | T_SYS PROJECT NAME | [PROJ_NAME] -» PROJECT
EST AND SUBMIS-
SION DATE OF | rpRosNol
DESIRED SET OF
DESIRED S| [SUB_DATE] » PR(IJ_EST
[T_SYS]
100044371 4-90

Table 4-4. SEL Database Access Paths (19 of 28)

Target Target Access
Ref. ID Table Column Information Access Path
10,091 |PROJ_ |END_DATE |PROJECTNAME [[PROJ_NAME]» PROJECT
EST_ AND SUBMiS-
PHASE SION DATE OF l [PROJ_NO]
PEF OR PCSF [SUB_DATE] % PROJ_EST_PHASE
MAX [END_DATE]
P6—P11, |PROJ_ | START_DATE |PROJECT NAME [[PROJ_NAME]» PROJECT
D3-D8, EST_ AND SUBMIS- [PROJ_NOJ
P125-P131, | PHASE SION DATE OF -
D84-Ds0 PEF OR PCSF (SUB_DATE] -» PROJ_EST_PHASE
MIN [START _DATE]
P6—P11, |PROJ_ | START_DATE, | PROJECT NAME, |[PROJ_NAME]» PROJECT
EST_ END_DATE | PHASE CODE, [PROJ_NO]
PHASE AND SUBMIS- -
SION DATE OF UB_DAT ROJ_EST_PHASE
SN AT oy | IsuB_DATE-> P _lT_ <« g’g]ASE_
[START_DATE],
[END_DATE]}
WHERE
PHASE_CO FOR P6, D3, P125, D84 = REQNT
PHASE_CO FOR P7, D4, P126. D85 = DESGN
PHASE_CO FOR P8, DS, P127, D86 = CODET
PHASE_CO FOR P9, D6, P128, D87 = SYSTE
PHASE_CO FOR P10, D7, P129, D88 = ACCTE
PHASE_CO FOR P11, D8, P130, D89 = CLEAN
PHASE_CO FOR P131, D90 = MAINT
PS P13, |PROJ_ |SUB_DATE |PROJECTNAME |[PROJ_NAME]-» PROJECT
P124, D02 |EST_ [PROJ_NO]
PHASE l -
PROJ_EST_PHASE
[SUB_DATE]
D20, D43, |PROJ_ |FORM_NO | PROJECT NAME, |[PROJ_NAME]-» PROJECT
D113, D150 |FORM AND FORM TYPE l [PROJ_NO]
[FORM_TYPE] » PROJ_FORM
[FORM_NO]
WHERE
FORM_TYPE FOR D150 = SEF
FORM_TYPE FOR D20 = PEF
FORM_TYPE FOR D49 = SPF
FORM_TYPE FOR D113 = PCSF
10004437L 4-91

Table 4-4. SEL Database Access Paths (20 of 28)

Target Target Access
Ret. ID Table Column information Access Path
P62, D42 PROJ_ GR_CH PROJECT NAME, |[PROJ_NAME]-» PROJECT
GRH AND WEEK END-
ING DATE l [PROJ_NO]
[SUB_DATE] -» PROJ_GRH
[GR_CH]
P60, D43 PROJ_ GR_LINE PROJECT NAME { [PROJ_NAME]-» PROJECT
GRH AND WEEK END-
ING DATE [PROJ_NO]
[SUB_DATE] -» PROJ_GRH
[GR_LINE}
P61, D41 PROJ_ GR_MOD - PROJECT NAME | [PROJ_NAME]-» PROJECT
GRH AND WEEK END-
ING DATE l [PROJ_NO]
{SUB_DATE] -» PROJ_GRH
[GR_MOD]
P4, D62 PROJ_ MESSAGES |PROJECTNAME |[PROJ_NAME]-» PROJECT
MES- AND NOTE TYPE
Shoes l [PROJ_NO]
[NOTE_TYPE] -» PROJ_NOTES
l [S_ID]
PROJ_MESSAGES
[MESSAGES)
WHERE
NOTE_TYPE = CLOSEQUT, COMPACCTS,
COMPSYS, CONTACTS,
CONTRLLIB, DATAAVAIL,
FORMSCOL, GENMESS. GHTOOL,
LANGUAGES, PROJNAME, OR
TASKNO
P4, D61 PROJ_ NOTE_TYPE |PROJECTNAME |[PROJ_NAME]-» PROJECT
NOTES l [PROJ_NOJ
PROJ_NOTES
[NOTE_TYPE]"CODED FIELD
10004437L 4-92

Table 4-4. SEL Database Access Paths (21 of 28)

Target Target Access
Ref. ID Table Column Information Access Path
Pas, D38 |PROJ_ |RES_HR PROJECT NAME | [PROJ_NAME] » PROJECT
PROD COMPUTER
NAME, AND [PROJ_NO]
‘l’)"g?é‘ ENDING | [suB_DATE] & PROJ_PROD < [RES_NAME]
[RES_HR]
Pas, D38 |PROJ_ | RES_NAME |PROJECTNAME |[PROJ_NAME]-» PROJECT
PRCD l [PROJ_NOJ
PROJ_PROD
[RES_NAME]
P46,D40 |PROJ_ | RES_RUN PROJECT NAME, | [PROJ_NAME]» PROJECT
PROD COMPUTER
NAME, AND [PROJ_NO]
‘gffg ENDING | [sys_DATE] & PROJ_PROD < [RES_NAME]
[RES_RUN]
10004437L 4-93

Table 4-4. SEL Database Access Paths (22 of 28)

Ret. 1D

Target
Table

Target
Column

Access
information

Access Path

P88-P107,
D114-D133,
P109-P123,
D135-D149

PROJ_
SEF

EVALUATE

PROJECT NAME
AND MEASURE-
MENT TYPE

[PROJ_NAME] » PROJECT

[PROJ_NO]

[MEAS_TYPE] & PROJ_SEF

[EVALUATE]
WHERE
MEAS_TYPE FOR P88, D114 = PM01
MEAS_TYPE FOR P89, D115 = PM02
MEAS_TYPE FOR P90, D116 = PM03
MEAS_TYPE FOR P91, D117 = PM04
MEAS_TYPE FOR P92, D118 = PM05
MEAS_TYPE FOR P93, D119 = PM06
MEAS_TYPE FOR P94, D120 = ST07
MEAS_TYPE FOR P95, D121 = ST08
MEAS_TYPE FOR P96, D122 = ST09
MEAS_TYPE FOR P97, D123 = ST10
MEAS_TYPE FOR P98, D124 = TM11
MEAS_TYPE FOR P99, D125 = TM12
MEAS_TYPE FOR P100, D126 = TM13
MEAS_TYPE FOR P101, D127 = TM14
MEAS_TYPE FOR P102, D128 = TM15
MEAS_TYPE FOR P103, D129 = PC16
MEAS_TYPE FOR P104, D130 = PC17
MEAS_TYPE FOR P105, D131 = PC18
MEAS_TYPE FOR P106, D132 = PC19
MEAS_TYPE FOR P107, D133 = PC20
MEAS_TYPE FOR P109, D135 = PC22
MEAS_TYPE FOR P110, D136 = PC23
MEAS_TYPE FOR P111, D137 = PC24
MEAS_TYPE FOR P112, D138 = EN25
MEAS_TYPE FOR P113, D139 = EN26
MEAS_TYPE FOR P114, D140 = EN27
MEAS_TYPE FOR P115, D141 = EN28
MEAS_TYPE FOR P116, D142 = EN29
MEAS_TYPE FOR P117, D143 = EN30
MEAS_TYPE FOR P118, D144 = PT31
MEAS_TYPE FOR P119, D145 = PT32
MEAS_TYPE FOR P120, D146 = PT33
MEAS_TYPE FOR P121, D147 = PT34
MEAS_TYPE FOR P122, D148 = PT35
MEAS_TYPE FOR P123, D149 = PT36

P108, D134

PROJ_
SEF_SEC

SECOND_L

PROJECT NAME
AND MEASURE-
MENT TYPE

[PROJ_NAME] 3 PROJECT
l [PROJ_NOJ

[MEAS_TYPE] % PROJ_SEF_SEC

|

[SECOND_L|"CODED FIELD

NOTE: MEAS_TYPE = PC21

100044370

4-94

Table 4-4. SEL Database Access Paths (23 of 28)

Target Target Access
Ref. ID Table Column Information Access Path
P133,D98 |PROJ_ | SER_HR PROJECT NAME | [PROJ_NAME] » PROJECT
STAT [PROJ_NO]
PROJ_STAT
[SER_HR]
P132, D92 |PROJ_ | TECH_MAN_ | PROJECT NAME |[PROJ_NAME]» PROJECT
PROJ_STAT
[TECH_MAN_HR]
P139,098 |PROJ_ | T_CH PROJECT NAME | [PROJ_NAME] » PROJECT
STAT [PROJ_NO]
PROJ_STAT
[T_CH]
P138, D97 |PROJ_ |T_COM PROJECT NAME | [PROJ_NAME] 3 PROJECT
STAT l [PROJ_NO]
PROJ_STAT
[T_COM]
P145 D104 |PROJ_ | T_COMMENT |PROJECTNAME |[PROJ_NAME]-» PROJECT
STAT [PROJ_NO]
PROJ_STAT
[T_COMMENT]
P140, 099 |PROJ_ |T_DOC PROJECT NAME | [PROJ_NAME] » PROJECT
STAT [PROJ_NO]
PROJ_STAT
[T_DOC]
P146, D105 | PROJ_ | T_EXE_MOD |PROJECT NAME |[PROJ_NAME]-» PROJECT
STAT l [PROJ_NO]
PROJ_STAT
(T_EXE_MOD]
100044371 4-95

Table 4-4. SEL Database Access Paths (24 of 28)

Target Target Access
Ret. ID Table Column Information Access Path
P150,D109 [PROJ_ |T_EXE_STAT |PROJECTNAME |[PROJ_NAME]-» PROJECT
STAT l [PROJ_NO]
PROJ_STAT
[T_EXE_STAT]
P213,D211 |PROJ_ [T_EXTMO_ |PROJECTNAME |[PROJ_NAME]-» PROJECT
PROJ_STAT
[T_EXTMO_LINE]
P214, D212 | PROJ_ T_EXTMO_ [PROJECT NAME |[PROJ_NAME] 3 PROJECT
STAT MOD l [PROJ_NO]
PROJ_STAT
[T_EXTMO_MOD)
P215, D213 | PROJ_ T_EXTMO_ |PROJECT NAME [[PROJ_NAME] 3 PROJECT
STAT STAT l [PROJ_NO]
PROJ_STAT
[T_EXTMO_STAT]
P219, D217 |PROJ_ T EXTMO_ [PROJECT NAME [[PROJ_NAME]-» PROJECT
STAT STMTS l [PROJ_NO]
PROJ_STAT
[T_EXTMO_STMTS]
P141,D100 | PROJ_ T_LINE PROJECT NAME | [PROJ_NAME] » PROJECT
STAT l [PROJ_NO]
PROJ_STAT
(T_LINE]
P143, D102 | PROJ_ T_MOD_LINE |PROJECT NAME |[PROJ_NAME] » PROJECT
STAT l [PROJ_NOJ
PROJ_STAT
[T_MOD_LINE]
100044370 4-96

Table 4-4. SEL Database Access Paths (25 of 28)

Target Target Access ,
Ret. ID Table Column Information Access Path
P148, D107 | PROJ_ | T.MOD_MOD |PROJECT NAME | [PROJ_NAME]» PROJECT
STAT [PROJ_NO]
PROJ_STAT
[T_MOD_MOD]
P152, D111 |PROJ_ | T_MOD_STAT | PROJECT NAME |[PROJ_NAME]-» PROJECT
STAT [PROJ_NO]
PROJ_STAT
(T_MOD_STAT]
P218, D216 |PROJ_ | T_MOD_ PROJECT NAME | [PROJ_NAME] » PROJECT
STAT STMTS [PROJ_NO]
PROJ_STAT
[T_MOD_STMTS)
P142, D101 |PROJ_ | T_NEW_LINE |PROJECT NAME |[PROJ_NAME]-» PROJECT
STAT l [PROJ_NO}
PROJ_STAT
[T_NEW_LINE]
P147.D106 |PROJ_ | T_NEW_MOD | PROJECT NAME |[PROJ_NAME] » PROJECT
STAT [PROJ_NO]
PROJ_STAT
[T_NEW_MOD]
P151, D110 |PROJ_ | T_NEW_STAT |PROJECT NAME |[PROJ_NAME]-» PROJECT
STAT l [PROJ_NO]
PROJ_STAT
[T_NEW_STAT]
P217, D215 |PROJ_ | T_NEW_ PROJECT NAME | [PROJ_NAME] » PROJECT
STAT STMTS (PROJ_NOJ
PROJ_STAT
[T_NEW_STMTS]
10004437L 4-97

Table 4-4. SEL Database Access Paths (26 of 28)

Target Target Access _
Ret. ID Table Column Information Access Path
P144,D103 [PROJ_ [T_OLD_LINE |PROJECTNAME |[PROJ_NAME]» PROJECT
STAT l [PROJ_NO]
PROJ_STAT
[T_OLD_LINE]
P149,D108 [PROJ_ [T_OLD_MOD |PROJECT NAME |[PROJ_NAME]-» PROJECT
STAT l [PROJ_NO]
PROJ_STAT
[T_OLD_MOD]
P153,D112 [PROJ_ |T_OLD_STAT |PROJECTNAME |[PROJ_NAME]-» PROJECT
STAT l [PROJ_NO]
PROJ_STAT
[T_OLD_STAT)
P220, D218 [PROJ_ | T_OLD_ PROJECT NAME | [PROJ_NAME] » PROJECT
STAT STMTS l [PROJ_NO)
PROJ_STAT
[T_OLD_STMTS]
P216,D214 [PROJ_ | T_STMTS PROJECT NAME | [PROJ_NAME] » PROJECT
STAT l [PROJ_NOJ
PROJ_STAT
[T_STMTS]
P137,D9% |PROJ_ |T_SYS PROJECT NAME |[PROJ_NAME]-» PROJECT
STAT [PROJ_NO]
PROJ_STAT
[T_SYS]
P47,P84. |PROJ_ |SUB_PRE PROJECT NAME |([PROJ_NAME] » PROJECT
bso sus l [PROJ_NO]
PROJ_SUB
[SUB_PRE]
100044371 4-98

Table 4-4. SEL Database Access Paths (27 of 28)

Target Target Access
Ref. ID Tabie Column Information Access Path
P50, D2 PROJ_ | SUB_DATE |PROJECT NAME |[PROJ_NAME]-» PROJECT
sus AND SUBSYS-
TEM PREFIX [PROJ_NO]
[SUB_PRE] » PROJ_SUB
[SUB_DATE]
Pas-Pas, |SPECIAL_ | ACT_HR PROJECT NAME | [PROJ_NAME] 5 PROJECT
D33-D36. |ACT PROGRAMMER
P167, D209 NAME, WEEK
ENDING DATE, [FORM_NAME] [PROJ_NOQO]
AND SPECIAL y
ACTIVITY
PERSONNEL
[PROG_ID] —» EFF_PROJ<€— [SUB_DATE]
[P_ID] = [EFF_ID]
[ACTIVITY] —p SPECIAL_ACT
[ACT_HR]
WHERE (FOR PRF)
SP_ACTIVITY FOR P35, 033= REWORK
SP_ACTIVITY FOR P36, D34= ENHANCE
SP_ACTIVITY FOR P37, D35= DOCUMENT
SP_ACTIVITY FOR P38, D36= REUSE
(FOR CLPRF)
SP_ACTIVITY FOR P167, D209 = CLMETHOD
P49 D52 | SUBSYS- | FUNCTION |PROJECT NAME |[PROJ_NAME] » PROJECT
TEM AND SUBSYS-
TEM PREFIX l [PROJ_NO]
[SUB_PRE] & PROJ_SUB
l [SUBSY_ID]
SUBSYSTEM
[FUNCTION]*CODED FIELD
Pag, D51 | SUBSYS- |NAME PROJECT NAME | [PROJ_NAME] -» PROJECT
TEM AND SUBSYS-
TEM PREFIX l [PROJ_NOI
[SUB_PRE] » PROJ_SUB
l [SUBSY_ID]
SUBSYSTEM
(NAME]
100044371 4-99

Table 4-4. SEL Database Access Paths (28 of 28)

Target Target Access _
Ret. ID Table Column information Access Path
P51,D53 | SUB_COM |COM_NAME | PROJECT NAME |[PROJ_NAME]-» PROJECT
AND SUBSYS-
TEM PREFIX l [PROJ_NO]
[SUB_PRE] -» PROJ_SUB
l [SUBSY_ID)
SUB_COM
[COM_NAME]
P52,D2 |SUB_COM |COM_DATE |PROJECT NAME |[PROJ_NAME]-» PROJECT
SUBSYSTEM
PREFIX, AND | rRounol
COMPONENT
Come [SUB_PRE] & PROJ_SUB
l [SUBSY_ID]
[COM_NAME] - SUB_COM
[COM_DATE]
P84,D53 |V_PROJ_ |COM_NAME | PROJECT NAME CHANGE_COM
CoM l [COM_NO}
[PROJ_NAME]» V_PROJ_COM
[COM_NAME]
100044371 4-100

SECTION 5—ACCESSING THE SEL DATABASE

The database table definitions, relationships, and access paths presented in Section4 provide
a guide to finding a particular software engineering data item in the database. This section
discusses how to actually access a data item once its location in the schema has been
identified.

Section 5.1 discusses how a user initially obtains access to the SEL database. Section 5.2
provides an introduction to the DAMSEL user interface (UI) subsystem: menus that allow
users to view data, enter data, generate reports, and perform various database support
functions. Section 5.3 presents an introduction to ad hoc database queries via SQL*Plus,
which is provided by ORACLE. This introduction covers the basics of how to formulate a
SQL query and provides several illustrative examples. Section 5.4 presents an introduction
to the query library. This introduction covers the help system, searching the library, and
executing and spooling queries.

5.1 DATABASE ACCESS REQUIREMENTS

To access the SEL database through SQL*Plus, a user must have a user ID and password for
the STL VAX 11/780 and an ORACLE user ID and password on the VAX. To access the SEL
database through DAMSEL, a user must have these IDs and passwords, plus have their
ORACLE user ID enrolled as a DAMSEL user. All of these can be obtained by contacting
either STL systems personnel or the SEL DBA at CSC.In DAMSEL, user classes are defined
to give different types of users appropriate levels of database access. The user class deter-
mines the access privileges a user has with respect to individual database tables and the
functions that may be performed in DAMSEL. The following user classes have been
defined:

e General user—Users requiring read-only access to the database, such as research-
ers and managers

e Librarian—SEL data entry personnel

e QA-—SEL quality assurance personnel

° MajntenanceJEL database maintenance programmers
e DBA—SEL database administrator

Once a user obtains the appropriate accounts and privileges and logs onto the STL VAX,, the
user must execute the following command procedure to create all of the logicals and symbols
required to access the ORACLE RDBMS and the DAMSEL system:

$ @STL DISK1:[TOOLS]SELINIT

10004437L 5-1

To avoid having to type this command each time the user logs on the VAX to access the
database, it is recommended that the command be included in the user’s LOGIN.COM file.
Then it will be executed automatically whenever the user logs onto the VAX.

5.2 DAMSEL

DAMSEL provides a convenient way for all classes of users to access the SEL data. This
menu-driven user interface has five major options at the top level:

® Form function option—This option permits users to view, insert, update, delete,
or quality assure SEL data interactively, one SEL form at a time. The screens for
performing these operations display data in a manner that resembles the data
collection forms presented in Section 3.

® Report function option—This selection provides a method for users to view
large amounts of data on single projects, or on multiple projects, within a single
report. Reports are available for viewing data that are not project-specific or re-
lated to SEL forms. Users select a sequence of reports and options (a script) from
the report menus and submit the script to be executed. They may also save fre-
quently used report scripts for future execution. Reports can be submitted interac-
tively or as batch jobs. The results may be printed or routed to files for terminal
display and/or future printing.

¢ Query support function option—This selection provides a set of ad hoc SQL
queries that would likely be used by general users, such as researchers and manag-
ers. (This option is currently not available.)

¢ DBA function option—This selection provides data entry screens for the SEL
DBA to enter or modify projects, personnel information, and computer informa-
tion and to perform various database verification tasks.

¢ General database support function option—This selection provides to SEL
database support personnel the capability to generate distribution tapes.

Users, depending on their assigned user class, may have access to one or more of these
functions. The menu system has built-in security features to verify that each user has the
access privilege to the functions that he or she is attempting to perform. The message “ You do
not have access to this option” will appear on the screen if the user tries to perform a function
that is not in his/her operational domain. Each user class has different access privileges in the
menu system. These are defined as follows:

¢ General user—This class of user can access all the SEL form function viewing
screens, all the report function screens, and all the query support function screens.

® Librarian—This class of user can access all the SEL form function viewing, in-
sert, update, and delete screens; all the report function screens; and the general
database support function screens.

100044371 : 5-2

e QA—This class of user can access all the SEL form function viewing and quality
- assurance screens, plus all the report function screens.

e Maintenance—This class of user can access all the SEL form function viewing
screens, all the report function screens, all the query support function screens, and
the general support function screens.

e DBA—This class of user can access all the SEL form function viewing screens,
all the report function screens, all the query support function screens, all the DBA
function screens, and all the general support function screens.

After the database access requirements, described in Section 5.1, are satisfied, the user can
access DAMSEL as follows:

e Log onto the VAX using his/her VAX user ID and password.
e At the ‘$’ prompt, type DAMSEL.

e Enter histher ORACLE user ID and password at the prompts on the DAMSEL
login screen.

e Select menu options.
e Terminate the DAMSEL session via the <Exit/Cancel> key.

Reference 3 presents a more detailed discussion on using the DAMSEL software.

5.3 AD HOC DATABASE QUERIES

The basic operations that may be performed on a database table are retrieving rows and
columns, inserting rows, deleting rows, and updating existing rows. In the SEL database,
insertion, deletion, and update operations are all performed via DAMSEL, as described in
the previous section. This is done to ensure that the semantic constraints imposed by the
nature of the software engineering data, as discussed in Section 4.2, are enforced at all times.
The operation of retrieving data, however, may be done in any context without risk of
violating the integrity of the database. This section discusses how to perform database
retrievals in an ad hoc manner. Additional examples of optimized SQL queries are presented
in Appendix B. Although an introduction to the SQL SELECT statement is included, the
coverage is not exhaustive. Refer to Reference 4 for a more in-depth presentation of the SQL
language.

5.3.1 Connecting to the Database

Once a user with database access (Section 5.1) has logged onto the VAX, typing the follow-
ing command at the system prompt connects him/her to the SEL database:

$ SQLPLUS

100044371 5-3

After supplying an ORACLE user ID and password at the prompts, the user is placed in an
interpretive environment from which he/she may enter ad hoc SQL queries to retrieve
database data. The command line prompt

SQL>

is displayed, signaling that the system is waiting for a SQL command. Upon entering a SQL
command, terminated with a semicolon (;), and pressing the return key, SQL processes the
command, displays the result, and returns to the SQL> prompt.

While in a SQL*Plus session, the following online HELP command is available:
SQL> HELP;
This displays a list of SQL commands, clauses, and related topics for which help is available.
To exit from a SQL*Plus session, the user types
SQL> EXIT
which will disconnect the user from ORACLE and return to the system prompt ($).

5.3.2 Basic Select Statement

The SQL statement for retrieving data from the database is the SELECT statement. In its
simplest form, the SELECT statement has the following syntax:

SQL> SELECT * FROM <table-name>;

This statement displays on the terminal screen every row in the table indicated, as in the
following example:

SQL> SELECT * FROM PROJECT;
PROJ_ NAME PROJ NO PROJ_TYPE ACTIVE STATUS

PROJ_101 101 SIMULATOR ACT_DEV
PROJ_102 102 AGSS ACT_DEV
PROJ_103 103 SIMULATOR ACT_DEV
PROJ_104 104 SIMULATOR ACT_DEV
PROJ_105 105 AGSS ACT_DEV
PROJ_106 106 SIMULATOR ACT_DEV
PROJ_71 71 SIMULATOR INACTIVE
PROJ_110 110 AGSS ACT_DEV
PROJ_108 108 SIMULATOR ACT_DEV
PROJ_96 96 ORBIT INACTIVE
PROJ_73 73 ATTITUDE ACT_MAINT
PROJ_72 72 OTHER ACT_DEV

100044371 5-4

The ‘*’ in this form of the SELECT statement indicates that all columns of the table should
be retrieved. To retrieve only specific columns, the **’ should be replaced by a list of the
desired column names. The column names need not be specified in the order in which they
are defined in the table definition, as illustrated in the following example:

SQL> SELECT PROJ_NO, PROJ _NAME FROM PROJECT;

PROJ NO PROJ_NAME

108 PROJ_108
96 PROJ_96
73 PROJ_73

5.3.3 Ordering the Retrieved Data

The SELECT statements seen thus far do not guarantee that the rows retrieved from the table
will be displayed in any particular order. This may be ensured by specifying an ORDER BY
clause on the SELECT statement, as in the following:

SQL> SELECT PROJ_NAME, PROJ_NO
2 FROM PROJECT
3 ORDER BY PROJ_NAME;

PROJ NAME PROJ_NO

PROJ_73 73
PROJ_101 101
PROJ_102 102
PROJ_110 110

This causes the retrieved rows to be displayed in ascending order, sorted on the column
specified in the ORDER BY clause. CHARACTER columns are sorted alphabetically,
NUMBER columns are sorted numerically, and DATE columns are sorted chronologicaily.
The default order in an ORDER BY clause is ascending. A dispiay in descending order may
be accomplished by specifying DESC after the name of the ORDER BY column. The
ORDER BY clause also permits sorting on more than one field.

In the previous example, the SELECT statement was entered on more than one line. This
illustrates that the SQL interpreter does not execute the command until a semicolon is
entered. The typed command is stored in a buffer that is retained after the command is

10004437L 5-5

executed. This buffer may be edited to change the query slightly without having to retype it
completely. The current command in the buffer may be executed by typing

SQL>/

followed by a carriage return. The command buffer may be displayed by typing ‘L’, followed
by a carriage return:

SQL>L
1 SELECT PROJ_NAME, PROJ_NO
2 FROM PROJECT
3 ORDER BY PROJ_NAME

Reference 4 provides details on editing the command buffer.
5.3.4 Limiting the Number of Rows Retrieved

The queries presented thus far have all displayed every row of the table specified. The
WHERE clause allows constraints to be defined that limit the number of rows retrieved, as in
the following example:

SQL> SELECT * FROM PROJECT WHERE PROJ TYPE = ‘SIMULATOR;
PROJ NAME PROJ.NO PROJ_TYPE ACTIVE STATUS

PROJ_101 101 SIMULATOR ACT_DEV
PROJ_71 71 SIMULATOR INACTIVE
PROJ_108 108 SIMULATOR ACT_DEV
PROJ_103 103 SIMULATOR ACT_DEV
PROJ_104 104 SIMULATOR ACT_DEV
PROJ_106 106 SIMULATOR ACT_DEV

This query selects only those records in which the PROJ TYPE column has a value of
‘SIMULATOR’. It should be noted that, when specifying a character constant (or a date
constant), it must be surrounded by single quotes. Date constants must be specified as
follows: ‘dd-mmm-yy’, as in ‘05-JAN-88’. ORACLE character fields are case sensitive, and
all the character fields in the SEL database that are commonly used in queries contain only
uppercase characters.

Additional relational operators useful in specifying WHERE conditions include the
following:

= not equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to

IN member of a list of items

100044371 5-6

The following example illustrates the use of the IN operator:

SQL> SELECT * FROM PROJECT
2 WHERE PROJ_NO IN (101,103,105,107);

PROJ NAME PROJ NO PROJ _TYPE ACTIVE_STATUS

PROJ_105 105 AGSS ACT_DEV
PROJ_103 103 SIMULATOR ACT_DEV
PROJ_101 101 SIMULATOR ACT_DEV

Conditions in a WHERE clause may be combined by the logical connectives AND, OR. and
NOT to build more complex conditions, as follows:

SQL> SELECT * FROM PROJECT
2 WHERE PROJ_TYPE = ‘SIMULATOR’
3 AND PROJ_NO > 104;

PROJ NAME PROJ NO PROJ_TYPE ACTIVE_STATUS
PROJ_106 106 SIMULATOR ~ ACT_DEV
PROJ_108 108 SIMULATOR ACT_DEV

When multiple conditions are specified, parentheses () may be used to clarify or override
precedence of operators.

5.3.5 Group Functions

A set of functions in SQL*Plus allows statistics to be calculated on the results of a query.
Some of the most common of these are COUNT, AVG, MAX, MIN, SUM, STDDEV, and
VARIANCE. The following example illustrates how these work:

SQL> SELECT COUNT(PROJ_NO)
2 FROM PROJECT;

COUNT(PROJ_NO)
90

This query returns a count of the number of rows in the PROJECT table that have a non-null
value in the PROJ_NO column. Null values are entered into a particular column of a
particular row to indicate that no data exist for that data item. The table definitions in
Section 4.1 indicate which columns in the database will accept null values. Thus, in the case
of the above query, since the PROJ_NO column does not accept null values, the query always
returns a count of all rows in the table. Like COUNT, the statistical functions AVG,
STDDEV, and VARIANCE operate only on non-null values. Another example is as follows:

SQL> SELECT COUNT(RES_HR), SUM(RES_HR), AVG(RES_HR)
2 FROM PROJ_PROD
3 WHERE PROJ_NO = 151:

100044371 5-7

COUNT(RES_HR) SUM(RES_HR) AVG(RES_HR)
22 1.88 085454545

5.3.6 Retrieving from More Than One Table—Joins

At this point, enough of the basic features of the SELECT statement have been presented to
allow the userto find a particular piece of data in the database. Suppose, for example, the user
wishes to know the names of the subsystem prefixes for project EXAMPLE. Consulting
Section 4.3, the first step is to find the PROJ_NO value for that project:

SQL> SELECT PROJ_NO
2 FROM PROJECT
3 WHERE PROJ_NAME = ‘EXAMPLE’;

PROJ_NO
135

The user can use this result to retrieve the subsystem prefixes from PROJ_SUB:

SQL> SELECT SUB_PRE
2 FROM PROJ SUB
3 WHERE PROJ_NO = 135;

SUB_PRE

PP
SD
™
PG
CM
UT
AC

This works, but rather than doing this in two steps every time, the same result can be
accomplished by a single query that joins the two tables:

SQL> SELECT SUB_PRE
2 FROM PROJECT, PROJ_SUB
3 WHERE PROJ_NAME = ‘EXAMPLE’
4 AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO;

SUB_PRE

PP
SD
™
PG
M
UT
AC

10004437L 5-8

In this query, ORACLE created a virtual table containing all the columns in both the
PROJECT and PROJ_SUB tables. If no constraints had been specified, the virtual table
would have contained a row for each possible pairing of a row in PROJECT with a row in
PROJ_SUB. However, the WHERE clause allowed it to create a virtual table in which the
only row selected from the PROJECT table was that in which the PROJ_NAME was
EXAMPLE; the only rows selected from the PROJ_SUB table were those in which the
PROJ_NO column had the same value as the PROJ_NO column in the row selected from
PROJECT (the PROJ_NO value for EXAMPLE). A join is not limited to two tables, and the
columns displayed may come from any of the tables specified, as in the following example
that displays the same subsystems as above, but includes the name of the project and the
descriptive name of the subsystem:

SQL> SELECT PROJ_NAME, SUB_PRE, NAME
2 FROM PROIJECT, PROJ_SUB, SUBSYSTEM
3 WHERE PROJ_NAME = ‘EXAMPLE’
4 AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO
5 AND PROJ_SUB.SUBSY_ID = SUBSYSTEM.SUBSY_ID
6 ORDER BY SUB_PRE;

PROJ_NAME SUB_PRE NAME

EXAMPLE AC ATTITUDE AND ORBIT CONTROL
EXAMPLE cM COMMON BLOCKS

EXAMPLE PG PLOT GENERATOR

When the same column name occurs in more than one of the tables selected, that name must
be qualified with the table name to refer to it within the query. Thus, PROJ_NO is qualified to
differentiate between its occurrences in the PROJECT and PROJ_SUB tables, but
PROJ_NAME need not be qualified, since it occurs only in the PROJECT table.

5.3.7 Retrieving from More Than One Table— Subqueries

Suppose the user wants to know the most recently estimated start and end dates for the design
phase of project EXAMPLE. The user could join PROJECT and PROJ_EST_PHASE on the
PROJ_NO field and get all of the estimated design phase start and end dates for that project.
To limit the retrieval to only one pair of dates, however, a subquery is used. The most
common use of a subquery is in specifying conditions on a WHERE clause, as follows:

SQL> SELECT PROJ_NAME, PHASE_CO, START_DATE, END_DATE
2 FROM PROIJECT, PROJ_EST_PHASE
3 WHERE PROJ_NAME = ‘EXAMPLE’
4 AND PHASE_CO = ‘DESGN’
5 AND PROJECT.PROJ_NO = PROJ_EST PHASE.PROJ_NO

100044371 5-9

4 6 AND SUB_DATE =
7 (SELECT MAX(SUB_DATE)
FROM PROJ_EST_PHASE
WHERE PROJ_EST_PHASE.PROJ_NO = PROJECTPROJ_NO);

O oo

PROJ_NAME PHASE_CO START DATE END DATE
EXAMPLE DESGN 06-JUN-87 02-JAN-88

This query joins the PROJECT and PROJ_EST PHASE tables on the PROJ_NO field, and
further limits the retrieval by specifying that only the PROJ_EST_PHASE row with the most
recent SUB_DATE for the specified project be selected. Note that subqueries are enclosed in
parentheses, and they must return a single value or a single column of values. The relational
operator IN may be used to see if a value is in a column of values retuned by a subquery.
Also, subqueries may be nested, as in the following example that lists the names of all
components under project EXAMPLE:

SQL> SELECT COM_NAME
2 FROM SUB_COM
3 WHERE SUBSY_IDIN

4 (SELECT SUBSY_ID

5 FROM PROJ_SUB

6 WHERE PROJ_NO =

7 (SELECT PROJ_NO

8 FROM PROJECT

9 WHERE PROJ_NAME = ‘EXAMPLE"));
COM_NAME

PROID

PROINI

PROINT

ACQINT

DELP

GETCAS

5.3.8 Views—A Shortcut for Commonly Used Joins

Several views have been defined in the SEL database to allow users quick access to common-
ly used data items. A view is a virtual table that consists of columns from one or more tables
selected by criteria specified in the definition of the view. For example, to be able to retrieve

100044371 5-10

all the component names for a given project, the V_PROJ_COM view was defined (referto
the table and view definitions in Section 4.1). Thus, the following:

SQL> SELECT * FROM V_PROJ_COM
WHERE PROJ_NAME = <project name>;

is equivalent to

SQL> SELECT PROJ_NAME, SUB_PRE, COM_NAME, COM_NO
FROM PROJECT, PROJ_SUB, SUB_COM
WHERE PROJ_NAME = <project name>
AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO
AND PROJ_SUB.SUBSY_ID = SUB_COM.SUBSY_ID;

Similarly, the view V SUBSYSTEM INFO allows subsysteni information to be selected
using the following query:

SQL> SELECT * FROM V_SUBSYSTEM_INFO
WHERE PROJ_NAME = <project name>;

This is equivalent to

SQL> SELECT SUB_PRE, NAME, FUNCTION, SUB_DATE, PROJ_NAME
FROM PROJECT, PROJ_SUB, SUBSYSTEM
WHERE PROJ_NAME = <project name>
AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO
AND PROJ_SUB.SUBSY_ID = SUBSYSTEM.SUBSY_ID;

Finally, the view V_PROJ_SUB_ACT is a shortcut to retrieve the activity hours charged toa
particular subsystem. Thus,

SQL> SELECT * FROM V_PROJ_SUB_ACT
WHERE PROJ_NAME = <project name>
AND SUB_PRE = <subsystem prefix>;

is equivalent to

SQL> SELECT PROJ_NAME, SUB_PRE, ACTIVITY, ACT_HR
FROM PROJECT, EFF_PROJ, EFF_SUB, EFF_ACT
WHERE PROJ_NAME =<project name>
AND PROJECT.PROJ_NO = EFF_PROJ.PROJ_NO
AND EFF_PROIJ.P_ID = EFF_SUB.P_ID
AND SUB_PRE = <subsystem prefix>
AND EFF_SUB.PS_ID = EFF_ACT.EFF_ID;

5.3.9 Spooling Output and Saving Queries

All the queries presented displayed their results on the terminal screen. To create a permanent
copy of the query results, it is necessary to spool the query session, or at least part of it, to a
file. This can be accomplished with the tollowing command:

SQL> SPOOL <VMS file name>;

100044371 5-11

If no file extension is supplied as part of the file name, a file is created in the current default
directory with the extension .LIS. After this command is entered, any queries executed and
the associated results are written to this file, as well as displayed on the screen. Spooling can
be turned off, with the following command:

SQL> SPOOL OFF,

It is also useful to save the contents of the current command buffer and reload it at some
future time. The first step can be accomplished with the following commands:

SQL> SAVE <VMS file name>;

If no file extension is supplied as part of the file name, a file is created in the current default
directory with the extension .SQL. This query can be reloaded into the command buffer by
using the following command:

SQL> GET <VMS file name>;

This command searches the current default directory for the file name specified. If no
extension is supplied in the file name, it searches for a file with extension .SQL. The loaded
query may now be executed or listed with / or L as described in Section 5.3.3.

This section presents enough about ad hoc database queries to enable the user to access any
particular item of software engineering data in which he or she is interested. It does not,
however, cover all of the features in SQL*Plus that facilitate data retrieval. Some additional
capabilities include displaying computed columns, simple patten matching in WHERE
clauses, conversion between data types, renaming column headings and defining display
formats, parameterizing queries, computing statistics on groups of records, and printing
them on break points when the value of a particular column changes. Readers who are
interested in these and other advanced features should refer to Reference 4.

5.4 QUERY LIBRARY

A collection of commonly used, generalized queries is organized into a library on the STL
VAX-11/780. The library includes a search facility with predefined commands to aid the
users in locating appropriate queries to retrieve desired information. The queries are grouped
into categories by the type of data they retrieve, as follows:

® Projects—General project data, statistics

¢ Effort—Personnel and services hours, activity hours
® Changes—Change and error data from CRFs

¢ Estimates—Estimated statistics and phase dates

® Growth—Growth history data

¢ Computers—Computer resource data

100044371 5-12

e Components—Component data from COFs
e Programmers—Programmer hours, activities
e Other—Miscellaneous queries not covered above

The search facility prompts for a category and provides a brief description of all queries
available under that category. A help command is also available that provides instructions for
using the library and lists the categories available.

Most of the queries prompt for parameters such as project name and date. The user should
note the following two important constraints:

1. All character data must be typed in UPPER CASE
2. All dates must be entered in the format DD-MMM-YY (e.g., 01-JAN-89)

Once a user with database access (Section 5.1) has logged onto the VAX, the following
command is typed to connect to SQL*Plus:

$ SQLPLUS

After supplying an ORACLE user ID and password at the prompts, the user is placed in an
interpretive environment from which he or she may use the query library. The command line
prompt

SQL>
is displayed, signaling that the system is waiting for a SQL command. Online query library
help is available by typing

SQL> START QLIB:QHELP

NOTE: The symbol “@” can be used in place of the word “START” (.e.,

@QLIB:QHELP)

The available help information on the query library will be displayed. To view a list of
available queries and their associated description, type the following:

SQL> START QLIB:SEARCH

The user will be prompted for the name of one of the above categories.

If the user is unsure of the category names, he or she should type a question mark (M and all
categories will be listed. Once the desired query has been located, the query can be executed

by typing
SQL> START QLIB:<query name>

All requested parameters should then be entered (note the previously mentioned constraints).
If the user wants to save the result, the following steps should be executed:

SQL> SPOOL <output file>
SQL> START QLIB:<query name>
SQL> SPOOL OFF

10004437L 5-13

The output will be located in user’s directory and appear as /output file/.LIS. Once the user
has completed use of the library, he/she can enter ad hoc queries (Section 5.3) or exit from

SQL*Plus by typing
SQL> EXIT

The system prompt will be displayed.

100044371 5-14

APPENDIX A—ENCODED FIELDS AND ALLOWABLE VALUES

This appendix lists all the codes used throughout the SEL database and their corresponding
values. Items are listed alphabetically according to the field in which the code is stored.
Exceptions to this are CL_ACTIVITY, DATA_AVAIL, and QA_STATUS. The CL_AC-
TIVITY codes are the Cleanroom PRF values that are stored in the ACTIVITY field of the
EFF_ACT table. DATA_AVAIL and QA_STATUS codes are stored only in the VALIDA-
TION table, but are included in the VAL_DATA_AVAIL and VAL_QA_STATUS views,

respectively.

Fields Where Used Code Value (Description)

ACTIVE_STATUS ACT_DEV Data collection is active; project is in
development

ACTIVE_STATUS ACT_MAINT Dat’a collection is active; project is in
maintenance

ACTIVE_STATUS DISCONT Data collection discontinued; data for
the project are incomplete; no plan to
validate data

ACTIVE_STATUS INACTIVE The project has been completed and no
more data are being collected

ACTIVITY ACCTEST Acceptance test

ACTIVITY CREDES Create design

ACTIVITY DEBUG Debugging

ACTIVITY INTTEST Integration test

ACTIVITY OTHER Other

ACTIVITY PREDES Predesign

ACTIVITY RDREVCOD Read/review code

ACTIVITY RDREVDES Read/review design

ACTIVITY SUPPORT Support

ACTIVITY TSTCODUN Test code units

ACTIVITY WRCODE Write code

ADA_FEATURE DATATYPE Data typing

100044371

A-1

Fields Where Used

ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
ADA_FEATURE
CH_CAUSE
CH_CAUSE
CH_CAUSE
CH_CAUSE
CH_CAUSE
CH_CLASS
CH_CLASS
CH_CLASS
CH_CLASS
CH_CLASS
CH_CLASS
CH_CLASS
CH_OBJECT
CH_OBJECT
CH_OBJECT
CH_OBJECT
CH_OBJECT
CH_OBJECT
CH_TYPE
CH_TYPE

100044371

Code

EXCEPT
GEN
OTHER
PACK
SUBPROG
SYSDEPF
TASK

CODE
DESIGN
OTHER
PRECH
REQMTSPEC
COMPUTE
DATAVAL
INIT
INTERE
INTERI
LOGIC
OTHER
CODE
DESIGNDOC
OTHER
REQMTDOC
SYSDESC
USERGUIDE
ADENC
ERRCO

Value (Description)

Exceptions

Generics

Other

Program structure and packaging
Subprograms

System dependent features
Tasking

Code

Software Design

Other

Previous Change
Requirements/functional specifications
Computational

Data (value or structure)
Initialization

Interface (extemal)

Interface (internal)

Logic/control structure

Other

Code

Design document

Other
Requirements/specifications document
System description

User’s guide

Adaptation to environment change

Error correction

Fields Where Used

CH_TYPE

CH_TYPE

CH_TYPE
CH_TYPE
CH_TYPE
CH_TYPE
CH_TYPE
CL_ACTIVITY
CL_ACTIVITY

CL_ACTIVITY

CL_ACTIVITY

CL_ACTIVITY

CL_ACTIVITY
CL_ACTIVITY

CL_ACTIVITY
CL_ACTIVITY
CL_ACTIVITY
CL_ACTIVITY
COM_TYPE

COM_TYPE
COM_TYPE

10004437L

Code

IMPCM

IMPRE

IMPUS
IN/DE
OPTSA
OTHCH
PLANE
CLACCTEST
CLCREDES

CLINDTEST

CLOTHER

CLPREDES

CLPRETEST
CLRDREVCOD

CLRESPSFR

CLVEREVDES

CLWRCODE
SUPPORT
ADAGENB
ADAGENS
ADAPACKB

Value (Description)

* Improvement of clarity, maintain-

ability, or documentation

Implementation of requirements
change

Improvement of user services
Insertion/deletion of debug code
Optimization of time/space/accuracy
Other change type

Planned enhancement

Cleanroom acceptance test

Cleanroom system, subsystems, or
components design

Cleanroom system components testing
by independent tester

Cleanroom other hours, i.e., manage-
ment, meetings, documentation, etc.

Cleanroom predesign, such as
requirements analysis

Cleanroom pretest

Cleanroom code read and code verifi-
cation

Cleanroom response to tester reported
problems and solution implementation

Cleanroom design verification and
review, including meetings, reviews, or
walkthroughs

Cleanroom system components coding
Cleanroom support

Ada generic body

Ada generic specification

Ada package body

Fields Where Used

COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
COM_TYPE
DATA_AVAIL

DATA_AVAIL
DATA_AVAIL
DATA _AVAIL

DATA _AVAIL

DATA_AVAIL

DATA _AVAIL

100044371

Code

ADAPACKS
ADASUBB
ADASUBS
ADATASKB
ADATASKS
ADAUNSPEC
ALC
BLOCKDA
DISPALY
FORTRAN
INCL

JCL
MENDEF
NAMELT
OTHER
PASCAL
REFDATA
COF

COM_NAME
CPU
CRF

EFF_PROJ

EFF_SERV

EFF_SPEC

A4

Value (Description)

Ada package specification

Ada subprogram body

Ada subprogram specification
Ada task body

Ada task specification

Ada source code (type unspecified)
Assembly language component
BLOCK DATA component
Dispaly identification
FORTRAN source code
Include file

Job control language

Menu definition or help file
NAMELIST or parameter list
Other type of component
Pascal source code

Reference data file

Component origination information
available

Component names available
Project computer resources available

Component change information avail-
able

Manpower effort data at the project
level available

Services effort data (Tech. Pubs.,
Secretary, etc.) available

Manpower effort data for special acti-
vities (rework, reuse, etc.) available

Fields Where Used

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA_AVAIL

DATA _AVAIL

DATA _AVAIL
DATA_AVAIL

DATA-AVAIL

DATA-AVAIL
EFF_COM_CH
EFF_COM_CH
EFF_COM_CH
EFF_COM_CH
EFF_COM_CH
EFF_ISO_CH
EFF_ISO_CH
EFF_ISO_CH
EFF_ISO_CH
EFF_ISO_CH

ERR_ACAUSE
ERR_ACAUSE

10004437L

Code

EFF_SUB
EST_S CH
EST_STAT
FIN_CPU
FIN_SCH
FIN_STAT

GRH
SAP

SEF

SIF

1HR

1DAY
3DAY
NDAY
NOTDET
1HR

IDAY
3DAY
NDAY
NOTDET
FEATUREC
FEATUREM

Value (Description)

Manpower effort data at the subsystem
level available

Estimated project phase schedules
available

Estimated project statistics (LOC,
effort data, component data) available

Closed project—Final computer
resources available

Closed project—Final phase dates
available

Closed project—Final statistics (LOC,
effort, component data) available

Project growth data available

Closed project—Detailed component
analysis available

Close project—Sujective evaluation
data available

Subsystem information available
1 hour or less

1 hour to 1 day

1 day to 3 days
More than 3 days
Not determined

1 hour or less

1 hour to 1 day

1 day to 3 days
More than 3 days
Not determined
Confused features

Misunderstood features

Fields Where Used

ERR_ACAUSE
ERR_ACAUSE
ERR_ARES
ERR_ARES
ERR_ARES
ERR_ARES
ERR_ARES
ERR_ARES
ERR_CLASS
ERR_CLASS
ERR_CLASS
ERR_CLASS
ERR_CLASS
ERR_CLASS
ERR_CLASS
ERR_SOURCE
ERR_SOURCE
ERR_SOURCE
ERR_SOURCE
ERR_SOURCE
ERR_SOURCE
ERR_TOOLS
ERR_TOOLS
ERR_TOOLS
ERR_TOOLS
ERR_TOOLS
ERR_TOOLS

100044371

Code

INCOF
INTERACT
MEMORY
NOTE
NTEAM
OTHER
REFMAN
TEAM
COMPUTE
DATAVAL
INIT
INTERE
INTERI
LOGIC
NOTDET
CODE
DESIGN
FUNSPEC
NOTDET
PRECH
REQMT
CMS
COMPI
DECTM
LSE
OTHER
PCA

A-6

Value (Description)

Features applied incorrectly
Misunderstood interaction of features
Own memory

Class notes

Someone not on project team
Other

Ada reference manual

Own project team member
Computational

Data value or structure
Initialization

Interface (external)
Interface (internal)
Logic/control structure

Not determined

Code

Design

Functional specifications
Not determined

Previous change
Requirements

Code Management System
Compiler

DEC Test Manager
Language sensitive editor
Other

Performance and coverage analyzer

Fields Where Used

ERR_TOOLS
ERR_TOOLS
FINAL_ORIGIN_CAT
FINAL_ORIGIN_CAT
FINAL_ORIGIN_CAT
FINAL_ORIGIN_CAT
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
MAINT_ACT

MAINT_ACT

MAINT_ACT

MAINT_ACT

MAINT_ACT
MAINT_ACT
MAINT_CH_TYPE

MAINT_CH_TYPE

10004437L

Code

SCA
SYMDEB
EXTMO
NEW
OLDUC
SLMOD
CPEXEC
DPDC
GRAPH

MATHCOMP

REALTIME
SYSSERV
USERINT

ACCBENTEST

IMPLEMENT

ISOLATION

OTHER

REDESIGN

UNSYSTEST

ADAPTATION

CORRECTION

Value (Description)

Source code analyzer

Symbolic debugger

Extensively modified
Completely new

Old (unchanged)

Slightly modified

Control processing/executive
Data processing/data conversion
Graphics and special device support
Mathematical/computational
Real-time control

System services

User interface

Hours spend on acceptance/benchmark
testing

Hours spend on changing a system,
code and the associated documentation
included

Hours spend on understanding the
failure or request for enhancement of
adaptation

Hours spend on other maintenance
activities

Hours spent on redesigning a system
Hours spend on unit/system testing

Adaptation (response to change of
operational environment)

Correction (system did not satisfy its
requirements)

Fields Where Used

MAINT_CH_TYPE

MAINT_CLASS

MAINT_CLASS

MAINT_CLASS

MAINT_CLASS

MAINT_COM_CH
MAINT_COM_CH
MAINT_COM_CH
MAINT_COM_CH
MAINT_COM_CH
MAINT_ISO_CH
MAINT_ISO_CH
MAINT_ISO_CH
MAINT_ISO_CH
MAINT_ISO_CH
MEASURE_CODE

MEASURE_CODE
MEASURE_CODE

MEASURE_CODE
MEASURE_CODE
MEASURE_CODE

1000443701

Code
ENHANCEMNT

ADAPTATION

CORRECTION

ENHANCEMNT

OTHER

1HR

1IDAY

IWEEK
IMONTH
IMONTHMORE
IHR

1DAY

IWEEK
IMONTH
IMONTHMORE
ACCTSTONE

ACCTSTPASS
ACCTSTRUN

DISCRES
MODCODE
MODDESIGN

A-8

Value (Description)

Enhancement (response to change of
requirements)

Hours spend on maintenance with
modifying a system to adapt to a
change

Hours spend on maintenance with a
system failure

Hours spent on maintenance with a
system failure

Hours spent on other maintenance
activities

1 hour or less

1 hour to 1 day

1 day to 1 week

1 week to 1 month
More than | month
1 hour or less

1 hour to 1 day

1 day to 1 week

1 week to 1 month
More than 1 month

Number of acceptance tests executed at
least one time

Number of acceptance tests passed

Number of acceptance test runs,
including reruns

Number of discrepancies resolved
Number of modules completed

Number of modules designed

Fields Where Used

MEASURE_CODE

MEASURE_CODE

MEASURE_CODE

MEASURE_CODE
MEASURE_CODE

MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE
MEAS_TYPE

MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE

100044371

Code

QUESTANS

SPECMODIMP

SYSTSTONE

SYSTSTPASS
SYSTSTRUN

PMO1
PMO02
PMO3
PM04
PMO05
PMO06
STO7

STO8

ST09

ST10

T™11
T™M12

™13
™14
TM15
PC16
PC17

A9

Value (Description)

Number of questions answered by
analysts

Number of specification modifications
implemented

Number of system tests executed at
least one time

Number of system tests passed

Number of system test runs, including
reruns

Problem difficulty

Tightness of schedule constraints
Requirements stability

Quality of specification documents
Requirements for documentation
Rigor of formal reviews

Ability of development team

Development team experience with
application

Development team experience with
environment

Stability of development team
composition

Project management performance

Project management experience with
application

Stability of project management team
Project planning discipline

Degree project plans followed
Modem programming practices

Disciplined change/question tracking

Fields Where Used

MEAS_TYPE

MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE
MEAS_TYPE

MEAS_TYPE

MEAS_TYPE
MEAS_TYPE

MEAS_TYPE
MEAS_TYPE

MEAS_TYPE
MEAS_TYPE

MEAS_TYPE
MEAS_TYPE

MEAS_TYPE .

MEAS_TYPE
MEAS_TYPE
NOTE_TYPE
NOTE_TYPE

10004437L

Code

PC18

PC19
PC20
PC21
PC22
PC23
PC24

EN25

EN26
EN27

EN28
EN29

EN30
PT31

PT32
PT33

PT34

PT35

PT36
CLOSEOUT
COMPACCTS

A-10

Value (Description)

Use of disciplined requirements analy-
sis methodology

Use of disciplined design methodology
Use of disciplined testing methodology
Use of tools

Use of test plans

Use of quality assurance procedures

Use of configuration management .
procedures

Degree of access to development
system

Programmers per terminal

Development machine resource
constraints

System response time

System hardware and support software
stability

Software tool effectiveness

Delivered software supports
requirements

Quality of delivered software

Quality of design present in delivered
software

Quality/completeness of software
documentation

Timely software delivery
Smoothness of acceptance testing
Project closeout status

Computer accounts to monitor

Fields Where Used

NOTE_TYPE

NOTE_TYPE
NOTE_TYPE
NOTE_TYPE
NOTE_TYPE
NOTE_TYPE
NOTE_TYPE
NOTE_TYPE
NOTE_TYPE
NOTE_TYPE
ORI_TYPE
ORI_TYPE
ORI_TYPE
ORI_TYPE
PHASE_CO
PHASE_CO
PHASE_CO
PHASE_CO
PHASE_CO
PHASE_CO
PHASE_CO
PROJ_TYPE
PROJ_TYPE
PROJ_TYPE
PROJ_TYPE
PROJ_TYPE

100044371

Code

COMPSYS

CONTACTS
CONTRLLIB
DATAAVAIL
FORMSCOL
GENMESS
GHTOOL

LANGUAGES

PROJNAME
TASKNO
EXTMO
NEW
OLDUC
SLMOD
ACCTE
CLEAN
CODET
DESGN
MAINT
REQNT
SYSTE
AGSS
ATTITUDE
DATABASE
GRAPH/UI
MP&A

A-11

Value (Description)

Development and operational
computer system

Project contacts

Names of controlled libraries
Type of data available

SEL forms collected
General messages

Growth history tool used
Languages used

Project full name

Task numbers and corresponding years

Extensively modified
Completely new

Old (unchanged)

Slightly modified

Acceptance test

Cleanup

Code and test (implementation)
Design

Maintenance

Requirement definition

System test

Attitude ground support system
Attitude oriented

Database

Graphics/user interface

Mission planning and analysis

Fields Where Used

PROJ_TYPE
PROJ_TYPE
PROJ_TYPE
PROJ_TYPE
PROJ_TYPE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
PURPOSE
QA_STATUS
QA_STATUS
SECOND_L
SECOND_L

SECOND_L
SECOND_L
SECOND_L
SECOND_L

SECOND_L
SECOND_L
SECOND_L
SECOND_L
SECOND_L

1000443701

Code

ORBIT
OTHER
REALTIME
SIMULATOR
TOOL

IOPRO
LODEC
HCCORRECT
HCERROR
CAT
CMTOOL

COMPI
EDIT
GRADIS
INTERF

ISPF

LSE
OTHER
PANVAL

A-12

Value (Description)

Orbit oriented

Other

Real time processing
Simulator

Software tool

Ada data abstraction

Ada process abstraction
Algorithmic/computational
Control module

Data transfer

Interface to operating system
1/O processing
Logic/decision
Hand-checked: correct
Hand-checked: errors found
Configuration Analysis Tool

Configuration management tool
(e.g. CMS, MMS)

Compiler
Editor
Graphics display builder

Interface checker (e.g., RXVP80,
ANALYZ)

ISPF

Linker

Language sensitive editor
Other tools

PANVALET

Fields Where Used

SECOND_L
SECOND_L
SECOND_L
SECOND_L
SECOND_L
SECOND_L
SECOND_L
SP_ACTIVITY

SP_ACTIVITY
SP_ACTIVITY
SP_ACTIVITY
SP_ACTIVITY
STATUS

STATUS
STATUS
STATUS
STATUS
STATUS_CODE
STATUS_CODE
STATUS_CODE
STATUS_CODE
STATUS_CODE
STATUS_CODE
STATUS_CODE
TARGET_CODE

10004437L

Code

PDLPR
REPLP

SAP

SDE
STRANT
SYMDEB
TESTCO
CLMETHOD

DOCUMENT
ENHANCE
REUSE
REWORK
CLOSED

HCCORRECT
HCERROR
UNCHK
VERAP
ACCTST
CODE
DESIGN
DISCREP
QUESTIONS
SPECMOD
SYSTST
QUESTSUB

A-13

Value (Description)

PDL processor

Requirement language processor
Source Code Analyzer program
Software development environment
Structured analysis tool
Symbolic debugger
Test coverage tool

Methodology understanding or
discussion

Document
Enhance/refine/optimize
Reuse

Rework

' Information has been verified and

validated—Project is closed
Hand-checked: correct
Hand-checked: errors found
Unchecked

Verified by application
Acceptance testing status
Code status

Design status

Discrepancy status
Questions to analysts status
Specification modification status
System testing status

Number of questions submitted to
analysts

Fields Where Used

TARGET_CODE

TARGET_CODE

TARGET_CODE

TARGET_CODE

TARGET_CODE
TARGET_CODE

10004437L

Code

SPECMODREC

TOTACCTST

TOTCODE

TOTDESIGN

TOTDISCREP
TOTSYSTST

A-14

Value (Description)

Number of specification modifications
received :

Total number of separate acceptance
tests planned

Estimated total number of modules to
be coded

Estimated total number of modules to
be designed

Total number of discrepancies reported

Total number of separate system tests
planned

APPENDIX B—SAMPLE OPTIMIZED DATABASE QUERIES

This appendix contains additional examples of SQL queries to augment those presented in
Section 5.3. These are optimized queries that are written specifically for an ORACLE
RDBMS environment. In each example, the desired retrieval is first expressed in an English
statement. This is followed by SQL statements to retrieve the desired data. The user should
remember that there is often more than one way to formulate a particular query; only one
method is presented here for each example.

1. Retrieve the names of all Attitude Ground Support Systems (AGSSs) with more
than 100,000 total lines of code.

SQL> SELECT PROJ_NAME
FROM PROJ_STAT, PROJECT
WHERE T_LINE > 100000
AND PROJ_TYPE = ‘AGSS’
AND PROJECT.PROJ_NO = PROJ_STAT.PROJ_NO;

2. Retrieve the names of all persons who have submitted PRFs for project ‘XYZ’.

SQL> SELECT DISTINCT FULL_NAME
FROM EFF_FORM, EFF_PROJ, PERSONNEL, PROJECT
WHERE FORM_TYPE = ‘PRF’
AND EFF_PROJ.P_ID = EFF_FORM.P_ID
AND EFF_PROJ.PROG_ID = PERSONNEL.PROG_ID
AND EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO
AND PROJ_NAME = ‘XYZ’;

3. For project ‘XYZ’, list alphabetically all component names (with subsystem pre-
fixes) that do not have COF data. '

SQL> SELECT SUB_PRE, COM_NAME
FROM V_PROJ_COM
WHERE PROJ_NAME = ‘XYZ’
AND COM_NO NOT IN
(SELECT COM_NO FROM COM_SOURCE)
ORDER BY SUB_PRE, COM_NAME;

100044371 B-1

4.

5.

10004437L

Retrieve the number of error correction changes for project ‘XYZ’ that took more
than 3 days to implement.

SQL> SELECT COUNT (CHANGE_NO)
FROM CHANGE
WHERE CHANGE_NO IN

(SELECT DISTINCT CHANGE _NO
FROM CHANGE_COM, V_PROJ_COM
WHERE CHANGE_COM.COM_NO =

V_PROJ_COM.COM_NO

AND PROJ_NAME = ‘XYZ’)
AND EFF_COM_CH = ‘NDAY’
AND CH_TYPE = ‘ERRCO’;

Retrieve the total design hours for project ‘XYZ’. This query may be interpreted

two ways.

a. Retnieve all hours charged to design activities.
SQL> SELECT SUM (ACT_HR)

FROM
- WHERE

EFF_ACT

EFF_ID IN

(SELECT P_ID

FROM EFF_PROIJ, PROJECT

WHERE EFF_PROJ.PROJ_NO =
PROJECT.PROJ_NO

AND PROJ_NAME = ‘XYZ’

UNION

SELECT PS_ID

FROM EFF_SUB, EFF_PROJ, PROJECT

WHERE EFF_PROJ.P_ID = EFF_SUB.P_ID

AND EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO

AND PROJ_NAME = ‘XYZ’)

AND ACTIVITY IN (‘CREDES’, ‘RDREVDES’);

b. Retrieve all manpower hours charged during the design phase.

First, find the design phase start and end dates.
SQL> SELECT START_DATE, END_DATE

WHERE

PROJ_EST_PHASE, PROJECT

SUB_DATE =

(SELECT MAX (SUB_DATE)

FROM PROJ_EST_PHASE

WHERE PROJ_NO = PROJECT.PROJ_NO)

B-2

AND PHASE_CO = ‘DESIGN’

AND PROJ_EST_PHASE.PROJ_NO =
PROJECT.PROJ_NO

AND PROJ_NAME = ‘XYZ’

Second, find all activity hours between these dates

SQL> SELECT SUM (ACT_HR)

FROM EFF_ACT

WHERE EFF_IDIN
(SELECT P_ID
FROM EFF_PROJ, PROJECT
WHERE SUB_DATE BETWEEN <start date>
AND <end date>
AND EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO
AND PROJ_NAME = ‘XYZ’
UNION
SELECT PS_ID
FROM EFF_SUB, EFF_PROJ, PROJECT
WHERE SUB_DATE BETWEEN <start date>
AND <end date>
AND EFF_PROJ.P_ID = EFF_SUB.P_ID
AND EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO
AND PROJ_NAME = ‘XYZ’
AND ACTIVITY ! = ‘SUPPORT");

100044371 B-3

APPENDIX C—SEL DATA COLLECTION FORMS

This appendix contains all the SEL data collection forms. Most forms are completed by
programmers and managers of SEL-monitored projects. The PCSF, PMF, PSF, and SPF are

completed by SEL personnel.

100044371 C-1

D21
D1

Name:

Project:

CHANGE REPORT FORM

Approved by:
D2

Date:

Section A ~ Identification

Describe the change: (What, why, how)

Effect: What components are changed?

Effort: What additional components

076

O Emror comraction [T Optimization of time/space/

] Planned enhancement accuracy

[implementation of requirements 7] Adaptation to environment
change change

{0 improvement of clarity, [Other (Describe below)
maintainability, or documentation
Improvement of user services

O Insertiorvdeletion of debug code 067

Prefix Name Version | were examined in determining

D61 Dé2 what change was needed?
{Attach list if more space is needed)
Location of developer's source files

month _day _year Check here if change involves Em
Need for change determined on: D63 Ada componants (It so, complete
Change completed (incorporated into system): D4 questions on reverse side)
thriess 1hr/iday 1/3days >3days
Effort in person time to isolate the change (or error): 065
Effort in person time to implement the change (or correction): D66
Section B — All Changes
Type of Change (Check one) VY Effects of Change

{0 [OQ Was the change or correction o one and only one
D68 component? {Must match Effect in Secton A)

[[J D you look at any other component? {Must
match Effort in Section A)
D69

3 [bid you have to be aware of parameters passed
D70 expiicity or implicitly (e.g., COMMON biacks) 1o or
from the changed components?

Section C — For Error Corrections Only

10004437-g019

Source of Error Class of Error Characteristics
(Check one) (Check most applicable)* (Check Y or N for all)
i nitialization
[Requirements O Initali D72 Y N
) Logic/control structure oga
3 Functional specitications O (e.9.. flow of control incorrect) 073 Qmission error (e.g.. something was left out)
(3 Design [Intertace (internal) {100 Sommission error (e.g.. something incorrect was
D (module-to-moduie communication) inciuded)
Code O nterface (external) D74
D Previous change (module o extemal communication) D D Error was created by transcnption (clencal)
Data (value or structure) D75
(e.g., wrong varable used) F b 's Use Ont
D71 D Computational or Libranan’s Use Only
{e.q., error in math exprassion) Number: D82
It two are equaily applicable. check the | D2
one higher on the iist Entered by:
Checked by:
NOVEMBER 1991

Figure C-1. Change Report Form (CRF) (1 of 2)

100044371

CHANGE REPORT FORM

Ada Project Additional Information

1. Check which Ada feature(s) was involved in this change (Check all that apply)

{0 Data typing] Program structure and packaging
D77 O Subprograms O Tasking

O Exceptions [0 System-dependent features

O Generics [0 Other, please specily

(e.g., /O, Ada statements)

2. Foranerrgr involving Ada components:

a. Does the compiler documentation or the language 078 (YIN)

reference manual explain the feature clearly?

b. Which of the following is most true? (Check one)
[0 Understood features separately but not interaction
[0 Understood features, but did not apply correctly
(O Did not understand features fully
O Confused feature with feature in another language

D79

¢. Which of the following resources provided the information
needed to correct the error? (Check all that apply)

[J Class notes O Own memory
D80 O Ada reference manual 7] Someone not on team
[J Own project team member O Other

d. Which tools, if any, aided in the detection or correction of this error? (Check all that apply)

O Compiler O Source Code Analyzer

O Symbolic debugger 3 P&CA (Performance and Coverage Anaiyzer)
D81 [0 Language-sensitive editor [0 DEC test manager

O cms O Other, specify

3. Provide any other information about the interaction of Ada and this change
that you feel might aid in evaluating the change and using Ada

NOVEMBER 1981

Figure C-1. Change Report Form (CRF) (2 of 2)

100044371) C-3

10004437-g020

COMPONENT ORIGINATION FORM

Identification
Name: D21
Project: o1 Date: D2
Subsystem Prefix: Ds0
Component Name: 0s3
Configuration Management Information
Date entered into controlled library (supplied by configuration manager): D54
Library or directory containing developer's source file:
Member name:
Relative Difficulty of Developing Component Ds5
Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard

1 2 3 4 5

Origin D56

If the component was modified or derived from a different project, please indicate the
approximate amount of change and from where it was acquired; if it was coded new (from
detailed design) indicate NEW.

NEW For Librarian's Use Only
Extensively modified (more than 25% of Numoer:

statements changed) Date:

Slightly modified Entered by:

Old (unchanged) Checked by:

it not new, what project or library is it from?
Component or member name:;

Type of Component (Check one only) 057

INCLUDE file {e.g., COMMON) BLOCK DATA file
Control language (e.g., JCL, DCL, CLIST)

ALC (assembler code) Ada subprogram body
FORTRAN source Ada package specification
Pascal source Ada package body

C source Ada task body

Ada generic instantiation
Ada generic specification

NAMELIST or parameter list
Display identification (e.g., GESS, FDAF)

T

N

Ada subprogram specification

Menu definition or help Ada generic body
Reference data files Other
Purpose of Executable Component D58

For executable code, please identity the major purpose or purposes of this component.
(Check all that apply).

I/0 processing Control module
Algorithmic/computational
Data transfer
Logic/decision

Process abstraction
Data abstraction

i
i

Intertace to operating system

NOVEMBER 1991

Figure C-2. Component Origination Form (COF)

100044371 C-4

10004437 G021

DEVELOPMENT STATUS FORM

Name: D21

D22

Proiect: D1 Date:

Please complete the section(s) thal is appropriate for the current status of the project.

Design Status

Planned total number of components to be designed D180
(New, modified, and reused)
Number of components designed D181
(Prolog and PDL have been compieted)
Code Status
Planned total number of components to be coded D182
(New, modified, and reused) i
Number of compenents completed E D183
{Added 1o controlled library) [
Testing Status System Test 3 Acceptance Test

Total number of separate tests planned D184 D188
Number of tests executed at least one time D185 D189
Number of tests passed D186 D130

Discrepancy Tracking Status (from beginning of system testing)
Total number of discrepanciss reported D192
Totat number of discrepancies resolved D193

Specification Modification Status (from beginning of requirements analysis)
Total number of specitication modifications received | D194
Total number of specification modifications completed (implemented) 1 D195
Requirements Questions Status (from beginning of requirements analysis)

Total number of questions submitted to analysts i D196
Total number of questions answered by analysts | D197

For Librarian's Use Only

D198

Check here if there
are no changes
Number:
Date:
Entered by:
Checked by:

NOVEMBER 1991

Figure C-3. Development Status Form (DSF)

10004437L C-5

10004437-g022

MAINTENANCE CHANGE REPORT FORM e
Name: D21 OSMR Number: D162 Date:
Entered by:
Project: D1 Date: D2 Checked by:

SECTION A: Change Request Information

Functional Description of Change:

What was the type of modification? What caused the change?
— Correction —— Requirements/specifications
D163 - Enhancement D164 —— Software design
— Adaptation ____ Code
—— Previous change
—— Other

SECTION B: Change Implementation Information

Components Added/Changed/Deleted:

Thrto 1dayto 1weekto
<tlhr 1day 1week 1month > 1month

Estimate effort spent isolating/determining the change: D1 65
Estimate effort to design, implement, and test the change: D166
Check all changed objects: D167 It code changed, characterize the change (check most

applicable):
-—— Requirements/Specifications Document —— Initialization D168
—— Design Document —— Logic/control structure
Code (e.g., changed flow of controt)
—— System Description —— Intertace (internatl)
User's Guide {module to module communication)
Other —— Interface (external)

{(module-to-external communication)
— Data (vaiue or structure)

(e.g., variable or value changed)
—— Computational

(e.g., change of math expression)
—— Other (none of the above apply)

Estimate the number of lines of code (including comments): D169 D170 D171
added changed deleted -
Enter the number of components: D172 0173 D174 8
added changed _ deleted &
Enter the number of the added components that are: —02175 D176 D177 3
totally new totally reused reused with S
modifications =

NOVEMBER 1991

Figure C-4. Maintenance Change Report Form (MCRF)

100044371 C-6

Personnel Resources Form

Name: D21
Project: D1 Date (Friday): 022
SECTION A: Total Hours Spent on Project for the Week:
SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity Activity Definitions Hours
Predesign Understanding the concepts of the system. Any work prior to the actual design (such D23

as requirements analysis).

Create Design Develcpment of the system, subsystem, or components design. Includes development D24

of POL, design diagrams, etc.

Read/Review Design | Hours spent reading or reviewing design. Includes design meetings, formal and informal D25
reviews, or walkthroughs.

Write Code Actually coding system components. Includes both desk and terminal code devetopment. D26
Read/Review Code | Code reading for any purpose other than isolation of errors. D27
Test Code Units Testing individual components of the system. includes writing test drivers. D28
Debugging Hours spent finding a known error in the system and developing solution. Includes gen- | g
eration and execution of tests associated with finding the error.
Integration Test Writing and executing tests that integrate system compenents, including system tests. D30
Acceptance Test Running/supporting acceptance testing. D31
Cther Cther hours spent on the praject not covered above. Includes management, meetings, D32

training hours, notebooks, system descriptions, user's guides, etc.

SECTION C: Effort On Specific Activities (Need not add to A)
(Some hours may be counted in more than one area; view each activity separately)

Rework: Estimate of total hours spent that were caused by unplanned changes or errors. includes 033
effort caused by unplanned changes to specifications, erroneous or changed design, errors or
unplanned changes to code, changes to documents. (This includes all hours spent debugging.)

Enhancing/Refining/Optimizing: Estimate of total hours spent improving the efficiency or clarity of design, or D34
code, or documentation. These are not caused by required changes or errors in the system.

Documenting: Hours spent on any documentation of the system. includes develcpment of design documents, D3s
prolags, in-line commentary, test plans, system descriptions, user's guides, or any other system
documentation.

Reuse: Hours spent in an effort to reuse components of the system. Includes effort in looking at other D36
system(s) design, code, or documentation. Count total hours in searching, applying, and testing.
For Libranan's Use Only
Numoer: D37
Date:
Entered by:
Checked by

NOVEMBER 1991

Figure C-5. Personnel Resources Form (PRF)

10004437L C-7

10004437-g024

Name: D21

Personnel Resources Form

(CLEANROOM VERSION)

Project,____ D!

Date (Friday):

022

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity Activity Definitions Hours

Predesign Understanding the concepts of the system. Any work prior to the actual design (such D199
as requirements analysis).

Pretest Developing a test plan and building the test environment. Includes generating test cases.
generating JCL, compiling components, buikding libranes, and defining inputs and D200
probabilities.

Create Design Development of the system, subsystem, or components design. Includes box structure D201
decomposition, stepwise refinement, development of POL, design diagrams, etc.

Venty/Review Design | includes design meetings, formal and informal reviews, and walkthroughs. D202

Wiite Code Actually coding system components. Includes both desk and terminal code development, | D203

Read/Review Code Code reading for any purpose other than isolation of errors. Includes venfying and D204
reviewing code for correctness.

Independent Test Executing and evaluating tests of system components. D205

Response to SFR Isolating a tester-reported problem and developing a solution. includes writing and
reviewing design or code to isolate and correct a tester-reported preblem. 0206

Acceptance Test Running/supporting acceptance testing. D207

Other Other hours spent on the project not covered above. Includes management, meetings, D208
training hours, notebooks, system descriptions, user's guides, etc.

SECTION C: Effort On Specific Activities

Methodology Understanding/Discussion: Estimate the total hours spent learning, discussing, reviéwing or
aftempting to understand cleanroom-related methods and techniques. Includes all ime spent in training.

For Libranan's Use Onty
Number: D210
Date:
Entered by:
Checked by:

NOVEMBER 1991

Figure C-6. Cleanroom Personnel Resources Form (CLPRF)

100044371

C-8

10004437 025

PROJECT COMPLETION STATISTICS FORM

Name:
Project D1 Date: D2
Phase Dates (Saturdays) Staff Resource Statistics
Phase Start Date Technical and
Management Hours De2
Requirements Definition D84
Design D8s Services Hours D93
implementation D86
r R r isti
System Test a7 Computer Resource Statistics
Acceptance Test D88 Computer CPU hours No. of runs
Cleanup D89 D38 D94 D9s
Maintenance D90
Project End D91

Project Size Statistics

General Parameters

Source Lines of Code

Number of subsystems D96 Total D100
Number of components D97 New D101
Number of changes Dgs Slightly Modified D102
Pages of documentation D99 Extensively Modified D211
Old D103
Comments D104
Executable Modules Executable Statements Statements
Total D105 | Total D109 | Total D214
New D106 | New D110 | New D215
Slightly Modified D107 | Slightly Modified D111 Slightly Modified D216
Extensively Modified D212 | Extensively Modified D213 | Extensively Modified D217
Od D108 | Oid D112 | Old D218
Note: All of the values on this form are to be actual values at For Libranan's Use Only
the completion of the project. The values entered by D113
hand by SEL personnel reflect the data collected by Number
the SEL during the course of the project. Update Date
these according to project records and supply values Entered by-
for all blank fields.
Checked by

700044379026

NOVEMBER 1991

Figure C-7. Project Completion Statistics Form (PCSF)

100044371

o
O

PROJECT ESTIMATES FORM

Name:

Project: D1 Date: _ D2

Phase Dates (Saturdays) Staff Resource Estimates
Phase Start Date Programmer Hours D11

Requirements Definition D3 Management Hours D12
Design D4 Services Hours D13
Implementation D5

System Test D6

Acceptance Test D7

Cleanup D8

Project End D10

Project Size Estimates

Number of subsystems

D14

Number of components

D15

Source Lines of Code

Total D16
New D17
Modified D18
Old D19
Note: All of the values on this form are to be For Librarian's Use Only
estimates of projected values at completion Number: D20
of the project. This form should be o
submitted with updated estimates every 6 to | 02t
8 weeks during the course of the project. Entered by:
Checked by:

NOVEMBER 1991

Figure C-8. Project Estimates Form (PEF)

100044371 C-10

10004437-g027

PROJECT MESSAGES FORM

Name:

Project: D1 - Date: D2

Messages:

P4, D61, D62

100044379028

NOVEMBER 1991

Figure C-9. Project Messages Form (PMF)

10004437L C-11

PROJECT STARTUP FORM

Name:

Project: D1 Date: 02
PLEASE PROVIDE ALL AVAILABLE INFORMATION

Project Fuill Name: P4, D61, D62

Project Type: P2, D60

Contacts: P4, D61, D62

Language: P4, D61, D62

Computer System: P4, D61, D62

Account: P4, D61, D62

Task Number: P4, D61, D62

Forms To Be Collected: (Circle forms that apply) P4, D61, D62
PEF PRF CLPRF DSF SPF SIF COF CCF CRF SEF PCSF WMEF MCRF
General Notes: P4, D61, D62

Personnel Names (indicate with * it not in database):

10004437-g029

NOVEMBER 1991

Figure C-10. Project Startup Form (PSF)

10004437L C-12

SERVICES/PRODUCTS FORM

Project: D1
Date (Friday): D22

COMPUTER RESOURCES

Computer

CPU Hours No. of Runs

D38

D39 D40

GROWTH HISTORY

Components (BZY
Changes D42
Lines of Code D43

SERVICES EFFORT

Service Hours
Tech Pubs D44
Secretary D45
Proj Mgmt D47 For Librarian’s Use Only
Other D48 Number: D49
Date:
Entered by:
Checked by:

NOVEMBER 1991

Figure C-11. Services/Products Form (SPF)

10004437L

C-13

10004437-g030

SUBJECTIVE EVALUATION FORM

Name:

Project: D1 Date: D2

Indicate response by circling the corresponding numeric ranking.

I. PROBLEM CHARACTERISTICS

1. Assass the intrinsic difficuity or compiexity of the problem that was addressed by the software development.
D114 1 2 3 4 5
Easy Average Difficult

2. How tight were schedule constraints on project?

D115 1 2 3 4 5
Loose Average Tight

3. How stable were requirements over development period?
D116 1 2 3 4 5

Loose Average High

4. Assess the overall quality of the requirements specification documents, including their clanty, accuracy,
consistency, and completeness.

D117 1 2 3 4 5
Low Average High

5. How extensive ware documentation requiremants?

D118 1 2 3 4 5
Low Average High

6. How rigorous were formal review requirements?

D119 1 2 3 4 5
Low Average High

iIl. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7. Assess overall quality and ability of development team.

D120 1 2 3 4 5
Low Average High
8. How would you characterize the development team's experience and familiarity with the application area of
the project?
D121 1 2 3 4 5
Low Average High

9. Assess the development team's experience and familianty with the development environment (hardware
and support software).

D122 1 2 3 4 5
Low Average High
10. How stable was tha composition of the development team aver the duration of the project?
D123 1 2 3 4 5
Loose Average High

FOR LIBRARIAN'S USE ONLY

Number: Entered by:

Date: 0150 Checked by:

NOVEMBER 1991

Figure C-12. Subjective Evaluation Form (SEF) (1 of 3)

100044371 C-14

10004437-g031

SUBJECTIVE EVALUATION FORM

D12

D13

D13

D13

D13

.

Il. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

11. Assass the overall psrformance of project management.

1 2 3 4 5
D124 Low Average High
12. Assess project management's experience and familiarity with the application.
1 2 3 4 5
D125 Low Average High
13. How stable was project management during the project?
2 3 4 5
D126 Low Average High
14. What degree of disciplined projact planning was used?
1 2 3 4 5
D127 Low Average High
15. To what degree were project plans followed?
D128 . 1 2 3 4 ‘5
Low Average High
IV. PROCESS CHARACTERISTICS

16. To what extant did the development team use modern programming practices (POL, top-down
development, structured programming, and code reading)?
Q 1 2 3 4 5
Low Average High

17. To what extent did the development team use well-defined or disciplined procedures to record
specification modifications, requirements questions and answers, and interface agreements?
1 2 3 4

0 Low Average High

18. To what extent did the development team use a well-defined or disciplined requirements analysis
mathcdology ?

1 1 2 3 4 5
Low Average High
19. To what extent did the development team use a well-defined or disciplined design methodoiogy?
1 2 3 4 S
2
Low Average High
20. To what extent did the development team use a well-defined or disciplined testing methodology?
3 1 2 3 4 5
Low Average High
PROCESS CHARACTERISTICS

21. What software tools were used by the development team? Check all that apply from the list that tollows
and identify any other toals that were used but are not listed.

O compiler JcaT
O Cinkar 0 PANVALET
(O editor {0 Test coverage tool

D134 [Graphic display builder O Intertace checker (RXYPSO. etc.)
(O Requirements language processor [0 Language-sansitive editor
[Structured analysis support tool {1 symbolic debugger
[0 POL processor [Configuration Management Tool (CMS, etc.)
3 IsPF [] Others (identity by name and function)
O sAP

22. To what extent did the development team prepare and follow test pians?
1 2 3 4 5
D135 Low Average High

10004437L

Figure C-12. Subjective Evaluation Form (SEF) (2 of 3)

C-15

10004437-9032

SUBJECTIVE EVALUATION FORM

IV. PROCESS CHARACTERISTICS (CONTD)

23. To what extent did the deveiopment team use well-defined and discipiined quality assurance procedures
(reviews, inspections. and walkthroughs)?

1 2 3 4 5
D136 Low Average High
24. To what extent did deveiopment team usa well-defined or disciplined contiguration management
procedures?
1 2 3 4 S
D137 Low Average High

V. ENVIRONMENT CHARACTERISTICS
25. How would you characterize the development team's degree of access to the development system?
1 2 3 4 S

D138 Low Average High
26. What was the ratio of programmers to terminals?
1 2 3 4 5
D139 8:1 4:1 211 11 12

27. To what degree was the deveiopment team constrained by the size of main memory or direct-access
storage available on the deveiopment system?
1 2 3 4 S
D140 Low Average High

28. Assess the system response time: were the turnaround times axperienced by the team satisfactory in
light of the size and nature of the jobs?
1 2 3 4 S
D141 Poor Average Very Good
29. How stable was the hardware and system suppon software (including language processors) during the
project?
1

2 3 4 S
D142 Low Average High

30. Assess the effactiveness of the software 100ls.

1 2 3 4 5
D143 Low Average High

VI. PRODUCT CHARACTERISTICS

31. To what degree does the delivered software provide the capabilities specified in the requirements?

D144 1 2 3 4 5
Low Average High

32. Assess the quality of the delivered software product.
D145 L;w ? Avearage * High

33. Assess the quality of the design that is present in the software product.
D146 L;w 2 Ave?age) ngh

34. Assess the quality and completeness of the delivered system documentation.
D147 L;w ? Ave::age) HnZh

35. To what degree were software products delivered on time?
D148 L;w 2 Ave::age) Higs;’n

36. Assess smoothness or reiative ease of acceptance testing.
2 3 4

D149 Low Average High

Figure C-12. Subjective Evaluation Form (SEF) (3 of 3)

10004437L C-16

10004437-g033

SUBSYSTEM INFORMATION FORM

Name:
Project: Dt Date: D2
Add New Subsystems
Subsystem Subsystem Subsystem
Prefix Name Function
D50 D51 D52

Change Existing Subsystems

Old Subsystem Prefix
(Must exist in the database)

Action
(R - Rename,
D - Delete)

New Subsystem Prefix
(Must not exist in the database)

This form is to be completed by the time of the Preliminary Design Review (PDR). An update
must be submitted each time a new subsystem is defined thereafter. This form is also to be
used when a subsystem is renamed or deleted.

A prefix of 2 to 5 characters used to identify the subsystem when naming

Subsystem Prefix:

Subsystem Name:
Subsystem Function:

components

A descriptive name of up to 40 characters

Enter the most appropriate function code from the list of functions below:

USERINT: User Interface
—— DPDC: Data Processing/Data Conversion

For Ubraran's Use Only REALTIME: Rearime Control
Number: MATHCOMP: Mathematical/Computational
Date: GRAPH: Graphics and Special Device Support
Entered by: CPEXEC: Control Processing/Executive
Checked by: SYSSERV: System Services

NOVEMBER 1991

100044371

C-17

Figure C-13. Subsystem Information Form (SIF)

10004437 9034

WEEKLY MAINTENANCE EFFORT FORM
Name: D21

Project: D1 Date (Friday): D22

For Ubranans Use Only

Number D161

Date.

Entered by

Checked by:

Section A — Total Hours Spent on Maintenance (inciudes time spent on all maintenance

activities for the project excluding writing specification modifications)

Section B — Hours By Class of Maintenance (Total of hours in Section B should equai totat hours in

Section A)

Class Definition Hours
Correction Hours spent on all maintenance associated with a system failure. D151
Enhancement Hours spent on all maintenance associated with modifying the system due

1o a requirements change. Includes adding, deleting, or modifying system D152
features as a result of a requirements change.
Adaptation Hours spent on all maintenance associated with modifying a system to
adapt to a change in hardware, system software, or environmental
characteristics. D153
Other Other hours spent on the project (related to maintenance) not covered
above. includes management, meetings, etc. D154

Section C — Hours By Maintenance ACtivity (Total of hours in Section C should equal total hours in

Section A)
Activity Activity Definitions Hours
Isolation Hours spent understanding the failure or request for enhancement or D155
adaptation.
Change Hours spent actually redesigning the system based on an understanding
Design of the necessary change. D156
Implementation Hours spent changing the system to compiete the necessary change.
This includes changing not only the code, but the associated D157
documentation.
Unit Test Hours spent testing the changed or added components. Includes hours
System Test spent testing the integration of the components. D158
Acceptance/ Hours spent acceptance testing or benchmark testing the modified
Benchmark Test system. D159
Other Other hours spent on the project (related to maintenance) not covered
above. Includes management, meetings, elc. D160

NOVEMBER 1991

Figure C-14. Weekly Maintenance Effort Form (WMEF)

100044371 C-18

10004437-g035

APPENDIX D—DATA DEFINITION LANGUAGE FOR THE
SEL DATABASE

This appendix describes the data definition language (DDL) that contains all the semantic
rules of the SEL database. This DDL represents the design of the SEL database. It is not
implementation language and should not be confused with Oracle’s DDL statements in SQL.

In the design DDL, each base relation is identified by the keyword RELATION and each
view is identified by the keyword VIEW. Each field within a relation is identified by the
keyword FIELD followed by its name, its data type, and its length. Char, which represents a
character data type, is followed by the maximum length of the field. Numeric, which
represents a numeric data type, is followed by the width of the field and the number of
decimal places, if any. Date represents an ORACLE date data type.

The primary key component(s) is identified by the keyword KEY. The keyword UNIQUE
identifies fields that are not part of the primary key but whose values are unique within a
relation. The keyword INDEX identifies fields that are not unique, but should be indexed to
facilitate database retrievals.

The constraints mentioned in Section 4.2.3 are represented by mathematical expressions.
The following constraint in the DDL

CONSTRAINT
RANGE PROJECT P
RANGE PROJ_SUB S
VvS 3P (PPROJ_NO = S.PROJ_NO)

can be interpreted as follows: P is the range variable that ranges over the PROJECT relation,
and its permitted values are records of PROJECT. S is the range variable that ranges over the
PROJ_SUB relation, and its permitted values are records of PROJ_SUB. Here, range vari-
ables are used as a simple shorthand. For all (V) S, there exists (3) Psuch that PROJ_NO in P
is equal to PROJ_NO in S. In other words, for each project number that exists in the
project—subsystem relation, the same project number must exist in the project relation.
Besides “for all” () and “there exist” (3) qualifiers, the qualifier “or” (V) is used in the
constraint definition of relation EFF_ACT, and the qualifier “and” A\ is used in the constraint
definitions of relations CH_ERR_ARES, CH_ERR_TOOLS, CH_ADAFEAT, and
CH_ERR_GEN. Each field within a view is identified by the keyword FIELD followed by
its name and the base relation from which it is derived. The field lengths are the same as in the
base relations.

100044371 D-1

RELATION CHANGE .
(FIELD CHANGE_NO char (6)
FIELD PROG_ID numeric(5)
FIELD SUB_DATE date
FIELD EFF_ONE char(1)
FIELD EFF_ADA char(1)
FIELD EFF_ISO_CH char(10)
FIELD EFF_COM_CH char(10)
FIELD EFF_PARPA char(1)
FIELD EFF_OTHER char(1)
FIELD DATE_DETER date
FIELD DATE_COMP date
FIELD NUM_COM_CH numeric(2)
FIELD NUM_COM_EX numeric(2)
FIELD CH_TYPE char(10)
FIELD FORM_TYPE char(6)
FIELD STATUS char(10))
KEY (CHANGE_NO)
INDEX (SUB_DATE)
INDEX (PROG_ID)
INDEX (CH_TYPE)
INDEX (STATUS)
CONSTRAINT
RANGE VAL _ISO_CH VEI
RANGE CHANGE CH
RANGE PERSONNEL PROG
RANGE VAL_STATUS VS
RANGE VAL_EFF_COM_CH VEC
RANGE VAL_CH_TYPE VCHT
VCH 3PROG (PROG.PROG_ID = CH.PROG_ID)
VCH 3VS (VS.CODE = CH.STATUS)
VCH 3VEI (VELCODE = CH.EFF_ISO_CH)
VYCH 3VEC (VEC.CODE = CH.EFF_COM_CH)
VCH 3IVCHT (VCHT.CODE = CH.CH_TYPE)
"VCH 3CH (CH.FORM_TYPE = ‘CRF’)

100044371 D-2

RELATION CHANGE_COM
(FIELD CHANGE_NO char(6)
FIELD COM_NO numeric(7))
KEY (CHANGE_NO, COM_NO)
INDEX (COM_NO)
CONSTRAINT
RANGE SUB_COMC
RANGE CHANGE_COM CHC
RANGE CHANGE CH
VYCHC 3C (C.COM_NO = CHC.COM_NO)
VCHC 3CH (CH.CHANGE_NO = CHC.CHANGE NO)

RELATION CH_ADAFEAT
(FIELD CHANGE_NO char(6)
FIELD ADA_FEATURE char(10))
KEY (CHANGE_NO, ADA_FEATURE)
CONSTRAINT
RANGE CHANGE CH
RANGE CH_ADAFEAT CHA
RANGE VAL_ADA_FEATURE VAF
YCHA 3VAF (VAF.CODE = CHA.ADA_FEATURE)

VYCHA 3CH (CH.EFF_ADA = ‘Y’ A CH.CHANGE_NO =
CHA.CHANGE_NO A CH.CH_TYPE = 'ERRCO’)

RELATION CH_ERR_ARES
(FIELD CHANGE_NO char(6)
FIELD ERR_ARES char(10))
KEY (CHANGE_NO, ERR_ARES)
CONSTRAINT
RANGE CHANGE CH
RANGE CH_ERR_ARES CHEA
RANGE VAL_ERR_ARES VEA

VCHEA 3CH (CH.CH_TYPE = ‘ERRCO’ A CH.CHANGE NO =
CHEA.CHANGE_NO A CH.EFF_ADA ='Y’)

VCHEA 3IVEA (VEA.CODE = CHEA.ERR_ARES)

100044371 D-3

RELATION CH_ERR_GEN
(FIELD CHANGE_NO char(6)
FIELD ERR_SOURCE char(10)
FIELD ERR_CLASS char(10)
FIELD ERR_COMIS char(1)
FIELD ERR_TYPO char(1)
FIELD ERR_OMIS char(1)
FIELD ERR_ADOC char(1)
FIELD ERR_ACAUSE char(10))
KEY (CHANGE_NO)
INDEX (ERR_ACAUSE)
CONSTRAINT
RANGE CHANGE CH
RANGE CH_ERR_GEN CHEG
RANGE VAL_ERR_SOURCE VES
RANGE VAL_ERR_CLASS VEC
RANGE VAL_ERR_ACAUSE VERA

VCHEG 3CH (CH.CH_TYPE = ‘ERRCO’ A CH.CHANGE_NO =
CHEG.CHANGE_NO)

VCHEG 3VES (VES.CODE = CHEG.ERR_SOURCE)
VYCHEG 3IVERA (VERA.CODE = CHEG.ERR_ACAUSE)
VCHEG 3IVEC (VEC.CODE = CHEG.ERR_CLASS)

RELATION CH_ERR_TOOLS
(FIELD CHANGE_NO char(6)
FIELD ERR_TOOLS char(10))
KEY (CHANGE_NO, ERR_TOOLS)
CONSTRAINT
RANGE CHANGE CH
RANGE CH_ERR_TOOLS CHET
RANGE VAL_ERR_TOOLS VET

VCHET 3CH (CH.CH_TYPE = "ERRCO’ A CH.CHANGE_NO =
CHET.CHANGE_NO)

VCHET 3VET (VET.CODE = CHET.ERR_TOOLS)

100044371 D4

RELATION COMPUTER
(FIELD CPU_NAME char(10)
FIELD C_FULL_NAME char(20))
KEY (CPU_NAME)

RELATION COM_PURPOSE
(FIELD COM_NO numeric(7)
FIELD PURPOSE char(10))
KEY (COM_NO, PURPOSE)
CONSTRAINT
RANGE COM_SOURCE C
RANGE COM_PURPOSE CP
RANGE VAL_COM_PURPOSE_VCOP
VCP 3C (C.COM_NO =CP.COM_NO)
VYCP 3IVCOP (VCOP.CODE = CP.PURPOSE)

RELATION COM_SOURCE

(FIELD COM_NO numeric(7)
FIELD PROG_ID numeric(5)
FIELD FORM_NO char(6)
FIELD FORM_TYPE char(6)
FIELD STATUS char(10)
FIELD CREATE_DATE date
FIELD ORI_TYPE char(10)
FIELD COM_TYPE char(10)
FIELD DIFFICULTY numeric(2)
FIELD SUB_DATE date)

KEY (COM_NO)

UNIQUE (FORM_NO)

INDEX (FORM_NO)

INDEX (STATUS)

INDEX (CREATE_DATE)

INDEX (SUB_DATE)

CONSTRAINT
RANGE SUB_COM C
RANGE COM_SOURCE CSO

10004437L D-3

RANGE VAL_ORI_TYPE VOT

RANGE VAL_STATUS VS

RANGE VAL_COM_TYPE VCT

RANGE PERSONNEL PROG
YCSO 3C (C.COM_NO = CSO.COM_NO)
VCSO 3IVOT (VOT.CODE = CSO.ORI_TYPE)
VCSO 3VS (VS.CODE = CSO.STATUS)
VCSO 3IVCT (VCT.CODE = CSO.COM_TYPE)
VCSO 3PROG (PROG.PROG_ID = CSO.PROG_ID)
YCSO 3CSO (CSO.FORM_TYPE = ‘COF’)

RELATION COM_STAT
(FIELD COM_NO numeric(7)
FIELD C_EXE_S numeric(6)
FIELD C_LINE numeric(6)
FIELD C_C_LINE numeric(6)
FIELD C_STMTS numeric(6)
FIELD FINAL_ORIGIN_CAT char(10))
KEY (COM_NO)
ONSTRAINT
RANGE SUB_COM C
RANGE COM_STAT CS
VCS 3C(C.COM_NO = CS.COM_NO)

RELATION CRF_TEMP_CHANGE_COM
(FIELD USER_ID numeric
FIELD SUB_PRE char(5)
FIELD COM_NAME char(40)
FIELD COM_NO numeric(7))
KEY (USER_ID, SUB_PRE, COM_NAME)
CONSTRAINT
RANGE V_PROJ_COM VPROJ
RANGE CRF_TEMP_CHANGE_COM CRF
RANGE PROJ_SUB SUB
VYCRF 3JSUB (SUB.SUB_PRE = CRF.SUB_PRE)
VCRF 3VPROJ (VPROJ.COM_NAME = CRF.COM_NAME)
VCRF 3VPROJ (VPROJ.COM_NO = CRF.COM_NO)

10004437L D-6

RELATION DSF_MEASURE
(FIELD D_ID numeric(10)
FIELD STATUS_CODE char(10)
FIELD MEASURE_CODE char(10)
FIELD MEASURE_VALUE numeric(5))
KEY (D_ID, STATUS_CODE, MEASURE_CODE)
CONSTRAINT
RANGE VAL_DSF_TARGET VDT
RANGE VAL_DSF_MEASURE VDM
RANGE PROJ_DSF DSF
RANGE DSF_MEASURE DM
vDM 3VDT (VDT.CODE = DM.MEASURE_CODE)
YDM 32IVDM (VDM.CODE = DM.STATUS_CODE)
VDM 3DSF(DSF.D_ID =DM.D_ID)

RELATION DSF_TARGET
(FIELD D_ID numeric(10)
FIELD STATUS_CODE char(10)
FIELD TARGET_CODE char(10)
FIELD TARGET_VALUE numeric(5))
KEY (D_ID, STATUS_CODE, TARGET_CODE)
CONSTRAINT
RANGE VAL_DSF_TARGET VDT
RANGE VAL_DSF_STATUS VDS
RANGE PROJ_DSF DSF
RANGE DSF_TARGET DT
vDT 3VDT (VDT.CODE = DT.TARGET_CODE)
VDT 3VDS (VDS.CODE = DT.STATUS_CODE)
vYDT 3DSF (DSF.D_ID = DT.D_ID)

RELATION DUMMY
(FIELD HIDDEN char(1))

RELATION EFF_ACT
(FIELD EFF_ID numeric(10)
FIELD ACTIVITY char(10)
FIELD ACT_HR numeric(10, 2))

100044370 D-7

KEY (EFF_ID, ACTIVITY)
CONSTRAINT
RANGE EFF_PROJ EP
RANGE EFF_SUB ES
RANGE VAL_ACTIVITY VA
RANGE EFF_ACT EA
VEA 3VA (VA.CODE = EA.ACTIVITY)

VEA 3EPES (ES.PS_ID = EA.EFF_ID
EP.P_ID = EA.EFF_ID)

RELATION EFF_FORM
(FIELD P_ID numeric(10)
FIELD FORM_NO char(6)
FIELD FORM_TYPE char(6)
FIELD STATUS char(10))
KEY (P_ID)
INDEX (STATUS)
INDEX (FORM_NO)
CONSTRAINT
RANGE EFF_PROJ EP
RANGE EFF_FORM EFF
RANGE VAL_STATUS VS
VEFF 3EP (EP.P_ID = EFF.P_ID)
VEFF 3VS (VS.CODE = EFF.STATUS)
VEFF 3EFF (EFF.FORM_TYPE = ‘SPF’ V EFF.FORM_TYPE = ‘PRF’)

RELATION EFF_PROJ

(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD PROG_ID numeric(5)
FIELD P_ID numeric(10))

KEY (PROJ_NO, SUB_DATE, PROG_ID)

UNIQUE (P_ID)

INDEX (P_ID)

CONSTRAINT
RANGE PROJECT P
RANGE PERSONNEL PROG
RANGE EFF_PROJ EP

10004437L D-8

VEP 3P (P.PROJ_NO =EP.PROJ_NO)
VEP 3PROG (PROG.PROG_ID = EPPROG_ID)
VEP 3EP (EP.SUB_DATE = a valid Friday date)

RELATION EFF_SUB
(FIELD P_ID numeric(10)
FIELD SUB_PRE char(5)
FIELD PS_ID numeric(10))
KEY (P_ID, SUB_PRE)
UNIQUE (PS_ID)
INDEX (PS_ID)
CONSTRAINT
RANGE EFF_PROJ EP
RANGE EFF_SUB ES
RANGE PROJ_SUB S
VES 3S (S.SUB_PRE = ES.SUB_PRE)
VES 3EP (EP.P_ID = ES.P_ID)

RELATION GENERATE_SAT_DAY
(FIELD SCRIPT_NO numeric(10)
FIELD SAT_DAY date)
KEY (SCRIPT_NO, SAT_DAY)
CONSTRAINT
RANGE TEMP_SCRIPT T
RANGE GENERATE_SAT_DAY SAT
VSAT 3T (T.SCRIPT_NO = SAT.SCRIPT_NO)
VSAT 3SAT (SAT.SAT_DAY = a valid Saturday date)

RELATION MAINT_ACT_HRS
(FIELD MAINT_ID numeric(10)
FIELD MAINT_ACT char(10)
FIELD ACT_HR numeric(10, 2))

KEY (MAINT_ID, MAINT_ACT)

10004437L D-9

CONSTRAINT
RANGE MAINT_ACT_HRS MAH
RANGE MAINT_PROF MP
RANGE VAL_ACT VA
VMAH 3VC (VA.CODE = MAH.MAINT_ACT)
VMAH 3IMP (MPMAINT_ID = MAH.MAINT_ID)

RELATION MAINT_CHANGE

(FIELD MAINT_CH_NO char(6)
FIELD PROJ_NO numeric(3)
FIELD PROG_ID numeric(5)
FIELD SUB_DATE date
FIELD OSMR_NO numeric(4)
FIELD STATUS char(10)
FIELD FORM_TYPE char(6)
FIELD MAINT_CH_TYPE char(10)
FIELD CH_CAUSE char(10)
FIELD MAINT_ISO_CH char(10)
FIELD MAINT_COM_CH char(10)
FIELD CH_CLASS char(10)
FIELD EST_LOC_ADD numeric(6)
FIELD EST_LOC_CH numeric(6)
FIELD EST_LOC-DEL numeric(6)
FIELD COMP_ADD numeric(4)
FIELD COMP_CH numeric(4)
FIELD COMP_DEL numeric(4)
FIELD COMP_ADD_NEW numeric(4)
FIELLD COMP_ADD_REUSE numeric(4)
FIELD COMP_ADD_REMQD numeric(4)

KEY (MAINT_CH_NO)

INDEX (PROJ_NO)

CONSTRAINT
RANGE MAINT_CHANGE MC
RANGE VAL_MAINT_CH_TYPE VMCT
RANGE VAL_CH CAUSE VCHC
RANGE PROJECT P

100044370 D-10

RANGE VAL _STATUS VS

RANGE PERSONNEL PROG

RANGE VAL _MAINT_[SO_CH VMIC

RANGE VAL_MAINT_COM_CH VMCC

RANGE VAL_CH_CLASS VCC
¥YMC 3P (P.PROJ_NO =MC.PROJ_NO)
¥YMC 3PROG (PROG.PROG_ID = MC.PROG_ID)
YMC 3VS (VS.CODE = MC.STATUS)
YMC 3MC (MC.FORM_TYPE = ‘MCRF")
YMC 3VMCT (VMCT.CODE = MC.MAINT _CH_TYPE)
¥YMC 3IVCHC (VCHC.CODE = MC.CH_CAUSE)
YMC 3IVMIC (VMIC.CODE = MC.MAINT_ISO_CH)
YMC 3IVMCC (VMCC.CODE = MCMAINT_COM_CH)
YMC 3IVCC (VCC.CODE = MC.CH_CLASS)

YMC 3IMC (SUMMC.COMP_ADD) =
SUM(MC.COMP_ADD_NEW+
MC.COMP_ADD_REUSE+
MC.COMP_ADD_REMOD))

RELATION MAINT_CH_OBIJECTS
(FIELD MAINT_CH_NO char(6)
FIELD CH_OBJECT char(10))
KEY (MAINT_CH_NO, CH_OBJECT)
CONSTRAINT
RANGE MAINT_CH_OBJECTS MCO
RANGE VAL_CH_OBJECT VCO
RANGE MAINT_CHANGE MC
¥YMCO 3VCO (VCO.CODE = MCO.CH_OBJECT)
YMCO 3IMC (MC.MAINT_CH_NO = MCO.MAINT_CH_NO)

RELATION MAINT_CLASS_HRS
{FIELD MAINT_ID numeric(10)
FIELD MAINT_CLASS char(10)
FIELD CLASS_HR numeric(10, 2))

KEY (MAINT_ID, MAINT_CLASS)

100044371 D-11

CONSTRAINT
RANGE MAINT_CLASS_HRS MCH
RANGE MAINT_PROJ MP
RANGE VAL_CLASS VC |
VMCH 3VC (VC.CODE = MCH.MAINT_CLASS)
VMCH 3MP (MPMAINT_ID = MCH.MAINT_ID)

RELATION MAINT_PROJ
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD PROG_ID numeric(53)
FIELD MAINT_ID numeric(10)
FIELD FORM_NO char(6)
FIELD FORM_TYPE char(6)
FIELD STATUS char(10))
KEY (PROJ_NO. SUB_DATE, PROG_ID)
UNIQUE (MAINT_ID)
INDEX (MAINT _ID)
INDEX (FORM_NO)
ONSTRAINT
NGE MAINT_PROJ MP
RANGE PROJECT P
RANGE VAL _STATUS VS
RANGE PERSONNEL PROG
VMP 3P (P.PROJ_NO = MP.PROJ_NO)
YMP 3PROG (PROG.PROG_ID = MP.PROG_ID)
VMP 3VS (VS.CODE = MP.STATUS)
VMP 3MP (MP.SUB_DATE - a valid Friday date)
YMP 3IMP (MP.FORM_TYPE = ‘WMEF")

Z

RELATION PC_SEQNO
(FIELD TABLE_NAME char(20)
FIELD FIELD_NAME char(30)
FIELD MAX_SEQNO numeric(10))
KEY (TABLE _NAME. FIELD_NAME)

10004437L D-12

CONSTRAINT
RANGE PC SEQNO S

¥S 3S (S.TABLE_NAME = a valid reiation name
A S.FIELD_NAME = u valid field name within that
relation)

RELATION PERM_SCRIPT
(FIELD ORA _USER chart2(})
FIELD SCRIPT_NAME char(20)
FIELD SCRIPT NO numeric(10))
FIELD OUT _ROUTING char(20)
FIELD OUT_FILE char(20)
KEY (ORA_USER, SCRIPT_NAME)
UNIQUE (SCRIPT_NO)
INDEX (SCRIPT_NO)
CONSTRAINT
RANGE USER_CLASS U
RANGE PERM _SCRIPT P
vYP 3U (U.ORA_USER = P.ORA_USER)
vYP 3P (P.OUT_ROUTING = 2%
A (P.OUT_FILE '=null A
POUT_ROUTING ="1")

RELATION PERSONNEL

(FIELD PROG_iD numeric(53)
FIELD FORM_NAME char(15)
FIELD FULL_NAME char(30)
FIELD DATE_ENTRY date)

KEY (PROG_ID)

UNIQUE (FORM_NAME)

INDEX (FORM _NAME)

RELATION PROJECT

(FIELD PROJ _NAME char(8)
FIELD PROJ_NO numeric(3)
FIELD PROJ_TYPE char(10))
(FIELD ACTIVE_STATUS char(L))

KEY (PROJ_NAME)

UNIQUE (PROJ_NO)

INDEX (PROJ_NO)

1000443701 D-13

RELATION PROJ_CPU_STAT
(FIELD PROJ NO numeric(3)
FIELD SUB _DATE date
FIELD CPU_NAME char(10)
FIELD TOTAL_HRS numeric(10,2)
FIELD T_RUN numeric(6))
KEY (PROJ_NO. SUB_DATE. CPU_NAME)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_EST_CPU PESC
RANGE COMPUTER _CPU
VPESC 3P (P.PROJ_NO = PESC.PROJ_NO)
YPESC 3ICPU (CPU.CPU_NAME = PESC.CPU_NAME)

RELATION PRQOJ _DSF
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date.
FIELD PROG_ID numeric(5)
FIELD FORM_NO char(6)
FIELD STATUS char(10)
FIELD FORM_TYPE char(6)
FIELD D_ID numeric(10))
KEY (PROJ_NO, SUB_DATE)
UNIQUE (D_ID)
UNIQUE (FORM_NO)
INDEX (D_ID)
INDEX (FORM_NO)
CONSTRAINT
RANGE VAL_STATUS VDS
RANGE PERSONNEL PROG
RANGE PROJECT P
RANGE PROJ_DSF_PD
YPD 3P (P.PROJ_NO = PD. PROJ_NO)
¥YPD 3PROG (PROG.PRCG 1D = PD.PROG_ID)
VPD 3PD (PD.SUB_DATE = a valid Friday date)
VYPD 3VDS (VDS.CODE = PD.STATUS)
YPD JPD (PD.FORM _TYPE = 'DSF")

100044371 D-14

RELATION PROJ_EST

(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD T_SYS numeric(4)
FIELD T_COM numeric(4)
FIELD T_LINE numeric(7)
FIELD T_NEW_LINE numeric(7)
FIELD T_MOD_LINE numeric(7)
FIELD T_OLD_LINE numeric(7)
FIELD PRO_HR numeric(10,2)
FIELD MAN_HR numeric(10,2)
FIELD SER_HR numeric(10,2)

KEY (PROJ_NO, SUB_DATE)
NSTRAINT
RANGE PROJECTP
RANGE PROJ_EST PES

VPES 3P (PPROJ_NO = PES.PROJ_NO)

RELATION PROJ_EST_PHASE
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD PHASE_CO char(10)
FIELD START_DATE date
FIELD END_DATE date)
KEY (PROJ_NO, SUB_DATE, PHASE_CO)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_EST_PHASE PESP
RANGE VAL_PHASE_CO VPC
VPESP 3P (P.PROJ_NO = PESPPROJ_NO)
VPESP 3VPC (VPC.CODE = PESP.PHASE_CO)
VPESP 3PESP (PESP.START_DATE = a valid Saturday date)
VPESP 3JPESP (PESP.END_DATE = a valid Saturday date)

100044371 D-15

RELATION PROJ_FORM
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD FORM_NO char(6)
FIELD FORM_TYPE char(6)
FIELD STATUS char(10))
KEY (PROJ_NO, SUB_DATE, FORM_TYPE)
UNIQUE (FORM_NO, FORM_TYPE)
INDEX (FORM_TYPE)
INDEX (STATUS)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_FORM PF
RANGE VAL_STATUS VS
VPF 3P (P.PROJ_NO = PFPROJ_NO)
VPF 3VS (VS.COD = PF.STATUS)

VPF 3PF (PEFORM_TYPE = ‘PEF’ V PEFORM_TYPE =
‘SPF’ V PEFORM_TYPE = ‘PCSF’ V
PF.FORM_TYPE = ‘SEF’)

RELATION PROJ_GRH
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD GR_LINE numeric(7)
FIELD GR_MOD numeric(4)
FIELD GR_CH numeric(6))
KEY (PROJ_NO, SUB_DATE)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_GRH PG
VPG 3P (P.PROJ_NO =PG.PROJ_NO)
VPG 3PG (PG.SUB_DATE = a valid Friday date)

RELATION PROJ_MESSAGES
(FIELD S_ID numeric(5)
FIELD LINE_NO numeric (3)
FIELD MESSAGES char (65)
FIELD SUB_DATE date)

100044371 D-16

KEY (S_ID, LINE_NO)
CONSTRAINT
RANGE PROJ_NOTES PN
RANGE PROJ_MESSAGES PM
VPN 3PM (PM.S_ID = PN.S_ID)

RELATION PROJ_NOTES
(FIELD PROJ_NO numeric(3)
FIELD NOTE_TYPE char(10)
FIELD S_ID numeric(5))
KEY (PROJ_NO, NOTE_TYPE)
UNIQUE (S_ID)
INDEX (S_ID)
CONSTRAINT
RANGE PROJECT P
RANGE VAL_NOTE_TYPE VNT
RANGE PROJ_NOTES PN
VPN 3P (PPROJ_NO = PN.PROJ_NO)
VPN 3VNT_(VNT.CODE = PN.NOTE_TYPE)

RELATION PROJ_PROD
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD RES_NAME char(10)
FIELD RES_HR numeric(10,2)
FIELD RES_RUN numeric(5))
KEY (PROJ_NO, SUB_DATE, RES_NAME)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_PROD PR
RANGE COMPUTER CPU
VPR 3P (PPROJ_NO = PR.PROJ_NO)
VYPR 3CPU (CPU.CPU_NAME = PR.RES_NAME)
VPR 3PR (PR.SUB_DATE = a valid Friday date)

100044371 D-17

RELATION PROJ_SEF

(FIELD PROJ_NO numeric(3)

FIELD MEAS_TYPE char(10)

FIELD EVALUATE numeric(1))

KEY (PROJ_NO, MEAS_TYPE)

NSTRAINT

RANGE PROJECT P

RANGE PROJ_SEF PSE

RANGE VAL_MEAS_TYPE VMT
VPSE 3P (P.PROJ_NO = PSE.PROJ_NO)
VPSE 3IVMT_(VMT.CODE = PSE.MEAS_TYPE)

RELATION PROJ_SEF_SEC
(EIELD PROJ_NO numeric(3)
FIELD MEAS_TYPE char(10)
FIELD SECOND_L char(10))
KEY (PROJ_NO, MEAS_TYPE, SECOND _L)
NSTRAINT
RANGE PROJ_SEF_SEC PSES
RANGE PROJ_SEF PSE
RANGE VAL_SEC_L VSL

VPSES dJPSE (PSE.MEAS_TYPE = PSES.MEAS_TYPE A
PSE.PROJ_NO = PSES.PROJ_NO)

VPSES 3VSL (VSL.CODE = PSES.SECOND L)

RELATION PROJ_STAT
(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date
FIELD TECH_MAN_HR numeric(10,2)
FIELD SER_HR numeric(10,2)
FIELD T_SYS numeric(4)
FIELD T_COM numeric(4)
FIELD T_CH numeric(6)
FIELD T_DOC numeric(6)
FIELD T_LINE numeric(7)

100044371 D-18

FIELD T_NEW_LINE numeric(6)
FIELD T_MOD_LINE numeric(6)
FIELD T_OLD_LINE numeric(6)
FIELD T_COMMENT numeric(6)
FIELD T_EXE_MOD numeric(4)
FIELD T_NEW_MOD numeric(4)
FIELD T_MOD_MOD numeric(4)
FIELD T_OLD_MOD numeric(4)
FIELD T_EXE_STAT numeric(6)
FIELD T_NEW_STAT numeric(6)
FIELD T_MOD_STAT numeric(6)
FIELD T_OLD_STAT numeric(6)
FIELD T_STMTS numeric(6)
FIELD T_NEW_STMTS numeric(6)
FIELD T_MOD_STMTS numeric(6)
FIELD T_OLD_STMTS numeric(6))
FIELD T_EXTMO_LINE numeric(6)
FIELD T_EXTMO_MOD numeric(4)
FIELD T_EXTMO_STAT numeric(6)
FIELD T_EXTMO_STMTS numeric(6))
KEY (PROJ_NO)
CONSTRAINT
RANGE PROJECT P
RANGE PROJ_EST PES
VPES 3P (P.PROJ_NO = PES.PROJ_NO)

RELATION PROJ_SUB

(FIELD PROJ_NO numeric(3)
FIELD SUB_PRE char(5)
FIELD SUB_DATE date
FIELD SUBSY_ID numeric(5))

KEY (PROJ_NO, SUB_PRE)

UNIQUE (SUBSY_ID)

INDEX (SUBSY_ID)

100044370 D-19

CONSTRAINT
RANGE PROJECT P
RANGE PROJ_SUB S
VS 3P (P.PROJ_NO = S.PROJ_NO)

RELATION REP_CODES
(FIELD CODE char(10)
FIELD VALUE char(30)
FIELD FUNCTION char(15))
KEY (CODE)

RELATION SCRIPT_PROJECTS
(FIELD SCRIPT_NO numeric(10)
FIELD REPORT_SEQ numeric(3)
FIELD PROJ_NAME char(8))
KEY (SCRIPT_NO, REPORT_SEQ, PROJ_NAME)
CONSTRAINT
RANGE PROJECT PR
RANGE SCRIPT_REPORT R
RANGE SCRIPT_PROJECTS P

VP 3R (R.SCRIPT_NO =P.SCRIPT_NOA
R.REPORT_SEQ = PREPORT_SEQ)

VP 3PR (PR.PROJ_NAME = PPROJ_NAME)

RELATION SCRIPT_REPORT
(FIELD SCRIPT_NO numeric(10)
FIELD REPORT_SEQ numeric(3)
FIELD REPORT_CODE char(10)
FIELD REPORT_TYPE char(20)
FIELD REPORT_TYPE_SELECTION char(10))
KEY (SCRIPT_NO, REPORT_SEQ)
CONSTRAINT
RANGE PROJECT PROJ
RANGE PERM_SCRIPT P
RANGE TEMP _SCRIPT T

100044371 D-20

RANGE SCRIPT_REPORT S
RANGE VAL_REPORT_CODE VAL

VS P T (PSCRIPT_NO =S.SCRIPT_NO
T.SCRIPT_NO = S.SCRIPT_NO)

VS VAL (VAL.REPORT_CODE = S.REPORT_CODE)

VS PROJ ((S.REPORT_TYPE SELECTION = ‘INACTIVE’
V S.REPORT_TYPE SELECTION = ‘ACT_MAINT"
V S.REPORT_TYPE SELECTION = ‘ACT_DEV’
V S.REPORT_TYPE SELECTION = ‘ALL’
V S.REPORT_TYPE SELECTION = ‘LIST")
A S.REPORT_TYPE = ‘M")V
((S.REPORT_TYPE_SELECTION = null)
A (S.REPORT_TYPE = ‘O”)) V
(S.REPORT_TYPE SELECTION = PROJ.PROJ_NAME A
S.REPORT_TYPE =‘S’)

RELATION SEQNO
(FIELD TABLE_NAME char(30)
FIELD FIELD_NAME char(30)
FIELD MAXSEQNO numeric(10))
KEY (TABLE_NAME, FIELD_NAME)
CONSTRAINT
RANGE SEQNO S

VS 3S (S.TABLE_NAME = a valid relation name
S.FIELD_NAME = a valid field name within that
relation)

RELATION SPECIAL ACT
(FIELD EFF_ID numeric(10)
(FIELD SP_ACTIVITY char(10)
FIELD ACT_HR numeric(10, 2))
KEY (EFF_ID, SP_ACTIVITY)
CONSTRAINT
RANGE SPECIAL_ACT SA
RANGE EFF_PROIJ EP
RANGE EFF_SUB ES
RANGE VAL_SP_ACTIVITY VAL

VSA 3EP ES (EP.P_ID = SA.EFF_ID
ES.PS_ID = SA.EFF_ID)

VSA 3IVAL (VAL.SP_ACTIVITY = SA.SP_ACTIVITY)

100044371 D-21

RELATION SUBSYSTEM
(FIELD SUBSY_ID numeric(5)
FIELD NAME char(40)
FIELD FUNCTION char(10))
KEY (SUBSY_ID)
CONSTRAINT
RANGE PROJ_SUB S
RANGE SUBSYSTEM SUB
RANGE VAL_S FUNCTION VSF
VSUB 3S (S.SUBSY_ID = SUB.SUBSY_ID)
VSUB 3VSF (VSF.CODE = SUB.FUNCTION)

RELATION SUB_COM
(FIELD SUBSY_ID numeric(5)
FIELD COM_NAME char(40)
FIELD COM_NO numeric(7)
FIELD COM DATE date)
KEY (SUBSY_ID, COM_NAME)
UNIQUE (COM_NO)
INDEX (COM_NO)
CONSTRAINT
RANGE PROJ_SUB S
RANGE SUB_COM C
VC 3S(S.SUBSY_ID =C.SUBSY_ID)

RELATION TABLE_PRIVILEGE
(FIELD TABLE_NAME char(40)
FIELD USER_CLASS char(20)
FIELD SELECT_PRIV char(1)
FIELD INSERT_PRIV char(1)
FIELD UPDATE_PRIV char(1)
FIELD DELETE_PRIV char(1)
FIELD ALTER_PRIV char(1)
FIELD INDEX_PRIV char(1))

KEY (TABLE_NAME, USER_CLASS)

100044371 D-22

CONSTRAINT
RANGE TABLE_PRIVILEGE T
RANGE USER_CLASS U
¥T 3U (U.USER_CLASS = T.USER_CLASS)
VT 3T_(T.TABLE_NAME = a valid relation in the database)

RELATION TEMP_ACTIVITY
(FIELD ACTIVITY char(10)
FIELD SAT_DAY date
FIELD HOURS numeric(10,2)
FIELD PROJ_NO numeric(3)
FIELD SUB_HR numeric(10,2)
FIELD FLAG char(4)
FIELD SCRIPT_NO numeric(10))

RANGE GENERATE_SAT_DAY GSAT

YTEMP 3GSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO
A GSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_FORMCT
(FIELD SUB_DATE date
FIELD PROG_ID numeric(5)
FIELD FORM_TYPE char(6)
FIELD PROJ_NO numeric(3)
FIELD SCRIPT_NO numeric(10))
CONSTRAINT
RANGE TEMP_FORMCT TEMP
RANGE GENERATE_SAT_DAY GSAT

VTEMP 3GSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO
A GSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_MANHRS
(FIELD FORM_NAME char(15)
FIELD SAT_DAY date
FIELD HOURS numeric(10,2)

100044370 D-23

FIELD PROJ_NO numeric(3)

FIELD PROG_ID numeric(5)

FIELD SUB_HR numeric(10,2)

FIELD FLAG char(4)

FIELD P_ID numeric(10)

FIELD SCRIPT_NO numeric(10))
CONSTRAINT

RANGE TEMP_MANHRS TEMP

RANGE GENERATE_SAT DAY GSAT

VTEMP 3GSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT NO
A GSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_SCRIPT
(FIELD SCRIPT_NO numeric(10)
FIELLD ORA_USER char(20)
FIELD PROCESS_ID char(20)
FIELD OUT_ROUTING char(20)
FIELD OUT_FILE char(20)
FIELD RUN_STATUS char(10)
FIELD DELETE_STATUS char(10))
KEY (SCRIPT_NO)
NSTRAINT
RANGE USER_CLASS U
RANGE TEMP_SCRIPT T
VT 3U (U.ORA_USER = T.ORA_USER)

VT 3T ((T.OUT_ROUTING = ‘2’ V T.OUT_ROUTING = ‘1)
(T.OUT_FILE != null A T OUT_ROUTING = ‘1))

RELATION TEMP_SERVHRS
(FIELD FORM_NAME char(15)
FIELD SAT_DAY date
FIELD HOURS numeric(10,2)
FIELD PROJ_NO numeric(3)
FIELD PROG_ID numeric(5)
FIELD FLAG char(4)
FIELD P_ID numeric(10)

100044371 D-24

FIELD SCRIPT_NO numeric(10))
CONSTRAINT

RANGE TEMP_SERVHRS TEMP

RANGE GENERATE_SAT_DAY GSAT

YTEMP 3GSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO
A GSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION USER_CLASS
(FIELD ORA_USER_ID char(20)
FIELD USER_CLASS char(20))
KEY (ORA_USER_ID)
CONSTRAINT
RANGE USER_CLASS_ACCESS UA
RANGE USER_CLASS U
VU 3U (U.ORA_USER_ID = a valid ORACLE user ID)
VYU 3UA (UA.USER_CLASS = U.USER_CLASS)

RELATION USER_CLASS_ACCESS
(FIELD_USER_CLASS char(20)
FIELD ACCESS_TYPE char(10))
KEY (USER_CLASS, ACCESS_TYPE)
CONSTRAINT
RANGE USER_CLASS_ACCESS UA
RANGE USER_CLASS U
YU JUA (UA.USER_CLASS = U.USER_CLASS)

VUA 3UA (UA.ACCESS_TYPE = (‘BACKUP’ v ‘DBA’
Vv ‘DELETE’ V ‘DISTAPE’ vV ‘FORM’ V ‘GENERAL’
V ‘IMPORT’ V ‘INSERT’ V ‘QA’ V ‘QUERY’
Vv ‘REPORT’ V ‘RESTORE’ V ‘UPDATE’ V ‘VIEW’))

RELATION VALIDATION
(FIELD F_NAME char(20)
FIELD CODE char(10)
FIELD VALUE char(75))

KEY (F_NAME, CODE)

VIEW AUTHORIZE
(FIELD ACCESS_TYPE, SOURCE USER_CLASS_ACCESS
FIELD ORA_USER_ID, SOURCE USER_CLASS)

100044371 D-25

VIEW VAL_ACTIVE_STATUS
(FIELD CODE, SQURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_ACTIVITY
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_ADA_FEATURE
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_CH_CAUSE
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_CH_CLASS
(EIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_CH_OBIJECT
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL _CH_TYPE
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_CL ACTIVITY
(FIELD CODE, SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

EW VAL_COM_CH
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_COM_PURPOSE
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

100044370 D-26

VIEW VAL_COM_TYPE
(FIELD CODE, SOQURCE VALIDATION
FIELD VALUE, SOQURCE VALIDATION)

VIEW VAL_DATA_AVAIL
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_DSF_MEASURE
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_DSF_STATUS
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_DSF_TARGET
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_ERR_ACAUSE
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL _ERR_ARES
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_ERR_CLASS
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_ERR_SOURCE
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_ERR_TOOLS
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

10004437L D-27

VIEW VAL_FINAL_ORIGIN_ CAT
" (FIELD CODE, SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL _ISO_CH
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_MAINT_ACT
(FIELD CODE, SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL _MAINT_CH_TYPE
(EIELD CODE, SQURCE VALIDATION
FIELD VALUE, SOQURCE VALIDATION)

VIEW VAL_MAINT_CLASS
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_MAINT_COM _CH
(FIELD CODE, SQURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_MAINT_ISO_CH
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SQURCE VALIDATION)

VIEW VAL_MEAS_TYPE

(FIELD CODE, SQURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL _NOTE_TYPE
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL _ORI_TYPE
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOQOURCE VALIDATION)

100044371 D-28

VIEW VAL _PHASE_CO
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL _PROJ_TYPE
(FIELD PROJ_NO, SOURCE PROJECT
FIELD PROJ_TYPE, SOURCE PROJECT)

VIEW VAL _QA_STATUS
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_REPORT_CODE
(FIELD CODE, SQURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_SECOND_L
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_S_FUNCTION
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL_SP_ACTIVITY
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW VAL _STATUS
(FIELD CODE, SOURCE VALIDATION
FIELD VALUE, SOURCE VALIDATION)

VIEW V_CLEANROOM_ACT
(FIELD EFF_ID, SOURCE EFF_ACT
FIELD ACTIVITY, SOURCE EFF_ACT
FIELD ACT_HR, SOURCE EFF_ACT)
CONSTRAINT
RANGE EFF_ACT_EA

100044371 D-29

RANGE V_CLEANROOM_ACT VCA
RANGE VAL_CL_ACTIVITY VALA

VVCA 3JEA 3VALA (EA.ACTIVITY LIKE ‘CL%’ A
VALA.CODE = VCA.CL ACTIVITY)

VIEW V_CLEANROOM_PROJECTS
(FIELD PROJ_NAME, SQURCE PROJECT)

VIEW V_PERM_SCRIPT
(FIELD SCRIPT_NAME, SOURCE PERM_SCRIPT)

VIEW V_PROJ_COM
(FIELD PROJ_NAME, SOURCE PROJECT
FIELD SUB_PRE, SQURCE PROJ_SUB
FIELD COM_NAME, SOURCE SUB_COM
FIELD COM_NO, SOURCE SUB_COM)

VIEW V_PROJ_SUB_ACT
(FIELD PROJ_NAME, SOURCE PROJECT
FIELD SUB_PRE, SOURCE EFF_SUB
FIELD ACTIVITY, SOURCE EFF_ACT
FIELD ACT_HR, SOURCE EFF_ACT)

EW V_REP_CODES_CRITERIA
(FIELD VALUE, SOURCE REP CODES)

VIEW V_SEQNO
(FIELD TABLE_NAME, SOURCE SEQNO
FIELD FIELD_NAME, SOURCE SEQNO
FIELD MAXSEQNO, SOURCE SEQNO)

VIEW V_SUBSYSTEM_INFO
(EIELD FUNCTION, SOURCE SUBSYSTEM
FIELD NAME, SOURCE SUBSYSTEM
FIELD PROJ_NAME, SOURCE PROJECT
FIELD SUB_DATE, SOURCE PROJ_SUB
FIELD SUB_PRE, SOURCE PROJ_SUB)

100044370 D-30

GLOSSARY

Clause

Cluster

Column

Command
Field
Group

Index

Join

Null

Order by
Primary Key

Query

Record
Relation

Row

Subquery

Table

View

10004437L

A portion of a SQL command, starting with a reserved word, that
qualifies or constrains the operation of the command.

An internal mechanism for storing together groups of related col-
umns from different tables, or groups of like-valued column entries
from a single table, to improve efficiency. (There are no clusters in the
SEL database.)

A particular class of data items within a table. Each column has a
single value in each row of a table. Also called a field.

An instruction to the SQL*Plus interpreter.
Synonymous with column.

A SQL*Plus function that operates on a single column of all rows ina
query, returning a single value.

A mechanism for improving efficiency of database access by enab-
ling searches to be performed without always examining an entire
table.

Retrieval of related rows from two or more tables in a single query.

A “value “ for a column indicating that the column has no value. Null
values do not use storage space.

A SQL clause that controls the order of displayed rows.

A column or concatenation of columns whose values are frequently
used to access a row of a table.

An instruction to the SQL*Plus interpreter to retrieve one or more
rows and columns from one or more tables or views.

Synonymous with row.
Synonymous with table.

A single entry in a table, containing one entry for each column in the
table. Also called a record.

A query enclosed in parentheses that returns values used in a condi-
tion of a SQL command.

The basic unit of data storage in a relational DBMS. Contains a vari-
able number of rows, each of which contains a fixed number of col-
umns. Also cailed a relation.

A “virtual table” that consists of one or more columns from underly-
ing database tables. Views do not actually store data.

GL-1

ABBREVIATIONS AND ACRONYMS

AGSS
CDR
CLPRF
COF
CPU

CSC
DAMSEL
DBA
DDL

DSF
ERRCO

GSFC
ID
MCRF
NASA
OSMR
PC
PCSF
PDL
PDR
PEF
PMF
PRF
PSF

100044371

Attitude Ground Support System

critical design review

Cleanroom Personnel Resources Form
Component Origination Form

central processing unit

Change Report Form

Computer Sciences Corporation

Database Access Manager for the Software Engineering Laboratory
database administrator

data definition language

Development Status Form

error correction

Flight Dynamics Facility

Goddard Space Flight Center

identification

Maintenance Change Report Form

National Aeronautics and Space Administration
Operational Software Modification Number
personal computer

Project Completion Statistics Form
program design language

preliminary design review

Project Estimates Form

Project Message Form

Personnel Resources Form

Project Startup Form

QA quality assurance

RDBMS relational database management system
SEF Subjective Evaluation Form

SEL Software Engineering Laboratory

SFR Software Failure Report

SIF Subsystem Information Form

SLOC source lines of code

SPF Services/Products Form

SQL structured query language

STL Systems Technology Laboratory
WMEF Weekly Maintenance Effort Form

10004437L AB-2

REFERENCES

1. Software Engineering Laboratorﬂl, SEL-92-002, Data Collection Procedures for the
Software Engineering Laboratory (SEL) Database, G. Heller, J. Valett, and M. Wild,
March 1992

2. Computer Sciences Corporation, CSC/TM-87/6016, Design of the Rehosted SEL Da-
tabase, M. So and G. Heller, March 1987

3. — — — CSC/SD-88/6019.Database Access Manager for the Software Engineering
Laboratory (DAMSEL) User’s Guide, M. Buhler, K. Pumphrey, and D. Spiegel,
March 1990

4. ORACLE Corporation, SQL*Plus User's Guide and Reference, Version 3,
L. Colston, 1989

5. ORACLE Corporation, SQL Language Reference Manual, Version 6, D. Cheuand B.
Linden, 1990

6. C.J.Date, An [ntroduction to Database Systems, 2nd ed., Addison Wesley, 1977

100044371 R-1

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-
ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.
The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,
August 1976 : ,

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,
September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton and
S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Languages Study, P. A. Scheffer and
C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,
September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide
(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,
K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System Description and
User’s Guide, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language
(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Sofiware Engineering Workshop,
November 1979

BI-1

10000229
1018/0840

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS)/
GSSS) State-of-the-Art Computer Systems/Compatibility ~ Study, T. Welden,
M. McClellan, and P. Liebertz, May 1980

SEL-80-005, 4 Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software
Systems, J. F. Cook and F. E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User’s Guide, J. F. Cook
and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase 1 Evalua-
tion, W. J. Decker and F. E. McGarry, March 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Sofiware Engineering Workshop, December
1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-
neering Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September
1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N, Card, F E. McGarry, et al,,
August 1982

SEL-81-104, The Software Engineering Laboratory, D.N. Card, F.E. McGarry,
G. Page, et al., February 1982

SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools (Revision 1),
W.J. Decker, W. A. Taylor, E. J. Smith, et al., February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodol-
ogy for Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

BI-2

10000229
1018/0840

SEL-81-305, Recommended Approach to Software Development, L. Landis,
F. E. McGarry, S. Waligora, et al., June 1992

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From
the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code.Analyzer Program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,
M. G. Rohleder, and E. E. McGarry, October 1983

SEL-82-1006, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1991

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page,
D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,
F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,
C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-
sion 1), C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Labora-
tory (SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,
November 1984

SEL-84-101, Manager’s Handbook for Software Development (Revision 1), L. Landis,
F. E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D.N. Card,
R. W. Selby, Jr., E. E. McGarry, et al., April 1985

BI-3

10000229
1018/0840

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing CLEANROOM, and
Merrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry,
and C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop.,
December 1985

SEL-36-001, Programmer’s Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E.Secidewitz and
M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)
Turonal, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986
SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SEL-87-002, Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada® Design Process and Its Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

BI-4

10000229
1016/0840

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User’s Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/
Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,
November 1989

SEL-89-005, Lessons Leaned in the Transition to Ada From FORTRAN .a-t NASA/
Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users’ Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture
(Revision 1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-201, Software Engineering Laboratory (SEL) Database Organization and User’s
Guide (Revision 2), L. Morusiewicz and J. Bristow, October 1992

SEL-90-001, Database Access Manager for the Software Engineering Laboratory
(DAMSEL) User’s Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project
Description and Early Analysis, S. Green et al., March 1990

SEL-90-003,.4 Study of the Portability of an Ada System in the Software Engineering Labo-
ratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-
ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,
November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-
agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

BI-5

10000229
1016/0840

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,
S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,
December 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-
sion 1), F. McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler,
January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)
Database, G. Heller, March 1992

SEL-RELATED LITERATURE

4Agresti, W. W, V. E. Church, D. N. Card, and P. L. Lo, “Designing With Ada for Sat-
ellite Simulation: A Case Study,” Proceedings of the First International Symposium on
Ada for the NASA Space Station, June 1986

2Agresti, W. W,, E. E. McGarry, D. N. Card, et al., “Measuring Software Technology,”
Program Transformation and Programming Environments. New York: Springer-Verlag,
1984

lBailc.ey, J. W,, and V. R. Basili, “A Meta-Model for Software Development Resource
Expenditures,” Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981

8Bailey, J. W, and V. R. Basili, “Software Reclamation: Improving Post-Development
Reusability,” Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990

1Basili, V. R., “Models and Metrics for Software Management and Engineering,”
ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.
New York: IEEE Computer Society Press, 1980 (also designated SEL-30-008)

3Basili, V. R., “Quantitative Evaluation of Software Methodology,” Proceedings of the
First Pan-Pacific Computer Conference, September 1985

"Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of
Maryland, Technical Report TR-2244, May 1989

BI-6

10000229
1018/0840

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

8Basili, V. R., “Viewing Maintenance of Reuse-Oriented Software Development,”
IEEE Software, January 1990

1Basili, V. R., and J. Beane, “Can the Parr Curve Help With Manpower Distribution
and Resource Estimation Problems?,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

9Basili, V. R., and G. Caldiera, A4 Reference Architecture for the Component Facrory,
University of Maryland, Technical Report TR-2607, March 1991

1Basili, V. R., and K. Freburger, “Programming Measurement and Estimation in the
Software Engineering Laboratory,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, “Finding Relationships Between Effort and
Other Variables in the SEL,” Proceedings of the International Computer Software and
Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in
the SEL Environment, University of Maryland, Technical Report TR- 1699, August 1986

2Basili, V. R., and B. T. Perricone, “Software Errors and Complexity: An Empirical
Investigation,” Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, “Evaluating and Comparing Software Metrics in the Soft-
ware Engineering Laboratory,” Proceedings of the ACM SIGMETRICS Symposium/
Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, “ARROWSMITH-P—A Prototype Expert System for
Software Engineering Management,” Proceedings of the IEEE/MIT. RE Expert Systems
in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of
Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, “Evaluating Automatable Measures for Software Develop-
ment,” Proceedings of the Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, “Tailoring the Software Process to Project Goals
and Environments,” Proceedings of the 9th International Conference on Software Engi-
neering, March 1987

5Basili, V. R., and H. D. Rombach, “T AM E: Tailoring an Ada Measurement Envi-
ronment,” Proceedings of the Joint Ada Conference, March 1987

BI-7

10000229
1018/0840

SBasili, V. R.,and H. D. Rombach, “T A M E: Integrating Measurement Into Software
Environments,” University of Maryland, Technical Report TR-1764, June 1987

®Basili, V. R., and H. D. Rombach, “The TAME Project: Towards Improvement-
Oriented Software Environments,” [EEE Transactions on Software Engineering, June
1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment, University of Maryland, Technical
Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, Support for Comprehensive Reuse, University of
Maryland, Technical Report TR-2606, February 1991

3Basili, V. R.,and R. W, Selby, Jr., “Calculation and Use of an Environment’s Charac-
teristic Software Metric Set,” Proceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R.,and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strate-
gies, University of Maryland, Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., “Four Applications of a Software Data Collection
and Analysis Methodology,” Proceedings of the NATO Advanced Study Institute, August
1985

5Basili, V. R., and R. Selby, “Comparing the Effectiveness of Software Testing Strate-
gies,” IEEE Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, “Paradigms for Experimentation and Empirical Studies
in Software Engineering,” Reliability Engineering and System Safety, January 1991

4Basili, V.R, R. W, Selby, Jr., and D. H. Hutchens, “Experimentation in Software
Engineering,” I[EEE Transactions on Software Engineering, July 1986

2Basili, V.R., R. W. Selby, and T. Phillips, “Metric Analysis and Data Validation Across
FORTRAN Projects,” IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss, 4 Methodology for Collecting Valid Software Engineering
Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid Software Engi-
neering Data,” IEEE Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, “The Software Engineering Laboratory: Objec-
tives,” Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,
August 1977

10000229
1018/0340

Basili, V. R., and M. V. Zelkowitz, “Designing a Software Measurement Experiment,”
Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, “Operation of the Software Engineering Labora-
tory,” Proceedings of the Second Software Life Cycle Management Workshop, August
1978 '

1Basili, V.R., and M. V. Zelkowitz, “Measuring Software Development Characteristics
in the Local Environment,” Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, “Analyzing Medium Scale Software Development,”
Proceedings of the Third International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1978 :

9Booth, E. W,, and M. E. Stark, “Designing Configurable Software: COMPASS Imple
mentation Concepts,” Proceedings of Tri-Ada 1991, October 1991 :

9Briand, L. C., V. R. Basili, and W. M. Thomas, 4 Pattern Recognition Approach for Soft-
ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,
May 1991

SBrophy, C. E., W. W. Agresti, and V. R. Basili, “Lessons Learned in Use of Ada-
Oriented Design Methods,” Proceedings of the Joint Ada Conference, March 1987

®Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, “Lessons Learned in the
Implementation Phase of a Large Ada Project,” Proceedings of the Washington Ada
Technical Conference, March 1988

2Card, D. N., “Early Estimation of Resource Expenditures and Program Size,”
Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., “Comparison of Regression Modeling Techniques for Resource Estima-
tion,” Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N,, ‘A Software Technology Evaluation Program,” Annais do XVIII
Congresso Nacional de Informatica, October 1985

5Card, D. N.,and W. W. Agresti, “Resolving the Software Science Anomaly,” The Jour-
nal of Systems and Software, 1987

6Card, D. N., and W. W. Agresti, “Measuring Software Design Complexity,” The Jour-
nal of Systems and Software, June 1988

4Card,D.N., V. E. Church, and W. W. Agresti, “An Empirical Study of Software Design
Practices,” IEEE Transactions on Software Engineering, February 1986

Card, D. N, V. E. Church, W. W. Agresti, and Q. L. Jordan, “A Software Engineering
View of Flight Dynamics Analysis System,” Parts and II, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

BI-9

10000229
1016/0840

Card, D.N,, Q. L. Jordan, and V. E. Church, “Characteristics of FORTRAN Modules,”
Computer Sciences Corporation, Technical Memorandum, June 1984

SCard, D.N,, F E.McGarry, and G. T Page, “Evaluating Software Engineering
Technologies,” IEEE Transactions on Software Engineering, July 1987

3Card, D. N, G. T. Page, and E. E. McGarry, “Criteria for Software Modularization,”
Proceedings of the Eighth Intemational Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

IChen, E., and M. V. Zelkowitz, “Use of Cluster Analysis To Evaluate Software Engi-
neering Methodologies,” Proceedings of the Fifth Intemational Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

4Church, V.E.,, D.N. Card, W. W. Agresti, and Q. L. Jordan, “An Approach for
Assessing Software Prototypes,” ACM Software Engineering Notes, July 1986

2Doerflinger, C. W, and V. R. Basili, “Monitoring Software Development Through
Dynamic Variables,” Proceedings of the Seventh Intemational Computer Software and
Applications Conference. New York: TEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of
Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

8Godfrey, S., and C. Brophy, “Experiences in the Implementation of a Large Ada
Project,” Proceedings of the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for NAVPAK, Higher Order
Software, Inc., TR-9, September 1977 (also designated SEL-77-005)

SJeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical
Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

63 effery, D. R., and V. R. Basili, “Validating the TAME Resource Data Model,” Pro-
ceedings of the Tenth Intemational Conference on Software Engineering, April 1988

SMark, L., and H. D. Rombach, 4 Meta Information Base for Software Engineering,
University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, “Generating Customized Software Engineering
Information Bases From Software Process and Product Specifications,” Proceedings of
the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, E E.,and W. W. Agresti, “Measuring Ada for Software Development in the
Software Engineering Laboratory (SEL),” Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

"McGarry, F, L. Esker, and K. Quimby, “Evolution of Ada Technology in a Production
Software Environment,” Proceedings of the Sixth Washington Ada Symposium
(WADAS), June 1989

BI-10

10000229
1018/0840

3McGarry, F. E., J. Valett, and D. Hall, “Measuring the Impact of Computer Resource
Quality on the Software Development Process and Product,” Proceedings of the
Hawaiian Interational Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA Sofiware Research
Technology Workshop (Proceedings), March 1980

3Page, G., F. E. McGarry, and D. N. Card, “A Practical Experience With Independent
Verification and Validation,” Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

SRamsey, C. L., and V. R. Basili, .4n Evaluation of Expert Systems for Software Engi-
neering Management, University of Maryland, Technical Report TR- 1708, September
1986

3Ramsey, J., and V. R. Basili, “Analyzing the Test Process Using Structural Coverage,”
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

5Rombach, H. D., “A Controlled Experiment on the Impact of Software Structure on
Maintainability,” /JEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., “Design Measurement: Some Lessons Learned,” JEEE Software,
March 1990

9Rombach, H. D., “Software Reuse: A Key to the Maintenance Problem,” Butterworth
Journal of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, “Quantitative Assessment of Maintenance: An
Industrial Case Study,” Proceedings From the Conference on Software Maintenance,
September 1987

6Rombach, H. D., and L. Mark, “Software Process and Product Specifications: A Basis
for Generating Customized SE Information Bases,” Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989

6Seidewitz, E., “Object-Oriented Programming in Smalltalk and Ada,” Proceedings
of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987

5Seidewitz, E., “General Object-Oriented Software Development: Background and
Experience,” Proceedings of the 21st Hawaii International Conference on System
Sciences, January 1988

BI-11

10000229
1018/0840

6Seidewitz, E., “General Object-Oriented Software Development with Ada: A Life
Cycle Approach,” Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., “Object-Oriented Programming Through Type Extension in Ada 9X,”
Ada Letters, March/April 1991

4Seidewitz, E., and M. Stark, “Towards a General Object-Oriented Software Develop-
ment Methodology,” Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

?Seidewitz, E., and M. Stark, “An Object-Oriented Approach to Parameterized Soft-
ware in Ada,” Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., “On Designing Parametrized Systems Using Ada,” Proceedings of the
Seventh Washington Ada Symposium, June 1990 .

7Stark, M. E. and E. W. Booth, “Using Ada to Maximize Verbatim Software Reuse,”
Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, “Towards a General Object-Oriented Ada Lifecycie,”
Proceedings of the Joint Ada Conference, March 1987

8Straub, P A., and M. V. Zelkowitz, “PUC: A Functional Specification Language for
Ada,” Proceedings of the Tenth International Conference of the Chilean Computer Science
Society, July 1990

’Sunazuka, T, and V. R. Basili, Integrating Automated Suppon for a Software Manage-
ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,
July 1989

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Develop-
ment Data, Data and Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and
Analysis Center for Software, Special Publication, April 1981

SValett, J. D.,and F. E. McGarry, “A Summary of Software Measurement Experiences
in the Software Engineering Laboratory,” Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, “Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering Laboratory,” IEEE Transactions
on Software Engineering, February 1985

SWu, L., V. R. Basili, and K. Reed, “A Structure Coverage Tool for Ada Software Sys-
tems,” Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., “Resource Estimation for Medium-Scale Software Projects,” Pro-
ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

BI-12

10000229
1016/0840

27 elkowitz, M. V,, “Data Collection and Evaluation for Experimental Computer
Science Research,” Empirical Foundations for Computer and Information Science (Pro-
ceedings), November 1982

67 elkowitz, M. V., “The Effectiveness of Software Prototyping: A Case Study,” Pro-
ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the
ACM, June 1987

6Zelkowitz, M. V., “Resource Utilization During Software Development,” Journal of
Systems and Software, 1988

87 elkowitz, M. V., “Evolution Towards Specifications Environment: Experiences With
Syntax Editors,” Information and Software Technology, April 1990

Zelkowitz, M. V,, and V. R. Basili, “Operational Aspects of a Software Measurement
Facility,” Proceedings of the Software Life Cycle Management Workshop, September 1977

BI-13

10000229
1018/0840

NOTES:

IThis article also appears in
Volume I, July 1982.

2This article also appears in
Volume II, November 1983.

3This article also appears in
Volume III, November 1985.

“This article also appears in
Volume IV, November 1986.

SThis article also appears in
Volume V, November 1987.

®This article also appears in
Volume VI, November 1988.

"This article also appears in
Volume VII, November 1989.

8This article also appears in
Volume VIII, November 1990.

This article also appears in
Volume IX, November 1991.

10000229
1018/0840

SEL-82-004,

SEL-83-003,

SEL-85-003,

SEL-86-004,

SEL-87-009,

SEL-88-002,

SEL-89-006,

SEL-90-005,

SEL-91-005,

BI-14

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

LTI e e T T T T

